Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-18
FDTD Based Dictionary Matrix for Sparsity-Based through -Wall Radar Imaging
By
Progress In Electromagnetics Research M, Vol. 75, 21-28, 2018
Abstract
Compressive sensing for through-wall radar imaging (TWRI) is a promising method to obtain a high-resolution image with limited number of measurements. The capability of the existing method in the framework of CS is limited due to the model error stemmed from the approximated signal model which does not consider multipath returns or only consider first-order interior wall multipath returns. In order to exploit various multipath returns, finite-difference time domain (FDTD) technique is used to obtain the scattered signal for each assumed target position and then to construct the exact forward scattering model. Then, sparse reconstruction is used to solve this linear inverse problem. Numerical results demonstrate that the proposed approach performs better at ghost suppression in the same condition of the signal-to-noise ratio (SNR).
Citation
Fang-Fang Wang, Sichao Zhong, Huiying Wu, Tingting Qin, and Wei Hong, "FDTD Based Dictionary Matrix for Sparsity-Based through -Wall Radar Imaging," Progress In Electromagnetics Research M, Vol. 75, 21-28, 2018.
doi:10.2528/PIERM18082202
References

1. Amin, M. and K. Sarabandi, "Special issue on remote sensing of building interior," IEEE Geoscience & Remote Sensing Letters, Vol. 5, 118-118, 2008.
doi:10.1109/LGRS.2008.915679

2. Amin, M. G., Through-the-Wall Radar Imaging, CRC Press, 2010.

3. Yektakhah, B. and K. Sarabandi, "All-directions through-the-wall radar imaging using a small number of moving transceivers," IEEE Transactions on Geoscience & Remote Sensing, Vol. 54, 6415-6428, 2016.
doi:10.1109/TGRS.2016.2585112

4. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277

5. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

6. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, 489-509, 2004.
doi:10.1109/TIT.2005.862083

7. Huang, Q., L. Qu, B.Wu, and G. Fang, "UWB through-wall imaging based on compressive sensing," IEEE Transactions on Geoscience & Remote Sensing, Vol. 48, 1408-1415, 2010.
doi:10.1109/TGRS.2009.2030321

8. Wu, Q., Y. D. Zhang, F. Ahmad, and M. G. Amin, "Compressive-sensing-based high-resolution polarimetric through-the-wall radar imaging exploiting target characteristics," IEEE Antennas & Wireless Propagation Letters, Vol. 14, 1043-1047, 2015.
doi:10.1109/LAWP.2014.2380787

9. Zhang, W. and A. Hoorfar, "A generalized approach for SAR and MIMO radar imaging of building interior targets with compressive sensing," IEEE Antennas & Wireless Propagation Letters, Vol. 14, 1052-1055, 2015.
doi:10.1109/LAWP.2015.2394746

10. Wang, X., G. Li, Y. Liu, and M. G. Amin, "Two-level block matching pursuit for polarimetric through-wall radar imaging," IEEE Transactions on Geoscience & Remote Sensing, Vol. 99, 1-13, 2018.

11. Burkholder, R. J., "Electromagnetic models for exploiting multi-path propagation in through-wall radar imaging," International Conference on Electromagnetics in Advanced Applications, 572-575, 2009.

12. Gennarelli, G. and F. Soldovieri, "Multipath ghosts in radar imaging: Physical insight and mitigation strategies," IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, Vol. 8, 1078-1086, 2015.

13. Liu, J., L. Kong, X. Yang, and Q. H. Liu, "First-order multipath ghosts’ characteristics and suppression in MIMO through-wall imaging," IEEE Geoscience & Remote Sensing Letters, Vol. 13, 1315-1319, 2016.
doi:10.1109/LGRS.2016.2583795

14. Setlur, P., M. Amin, and F. Ahmad, "Multipath model and exploitation in through-the-wall and urban radar sensing," IEEE Transactions on Geoscience & Remote Sensing, Vol. 49, 4021-4034, 2011.
doi:10.1109/TGRS.2011.2128331

15. Setlur, P., G. Alli, and L. Nuzzo, "Multipath exploitation in through-wall radar imaging via point spread functions," IEEE Transactions on Image Processing, Vol. 22, 4571, 2013.
doi:10.1109/TIP.2013.2256916

16. Leigsnering, M., M. Amin, F. Ahmad, and A. M. Zoubir, "Multipath exploitation and suppression for SAR imaging of building interiors: An overview of recent advances," IEEE Signal Processing Magazine, Vol. 31, 110-119, 2014.
doi:10.1109/MSP.2014.2312203

17. Leigsnering, M., F. Ahmad, M. Amin, and A. Zoubir, "Multipath exploitation in through-the-wall radar imaging using sparse reconstruction," IEEE Transactions on Aerospace & Electronic Systems, Vol. 50, 920-939, 2014.
doi:10.1109/TAES.2013.120528

18. Leigsnering, M., F. Ahmad, M. G. Amin, and A. M. Zoubir, "Parametric dictionary learning for sparsity-based TWRI in multipath environments," IEEE Transactions on Aerospace & Electronic Systems, Vol. 52, 532-547, 2016.
doi:10.1109/TAES.2015.140828

19. Dogaru, T. and C. Le, "SAR images of rooms and buildings based on FDTD computer models," IEEE Transactions on Geoscience & Remote Sensing, Vol. 47, 1388-1401, 2009.
doi:10.1109/TGRS.2009.2013841

20. Lagunas, E., M. G. Amin, F. Ahmad, and M. Najar, "Joint wall mitigation and compressive sensing for indoor image reconstruction," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, 891-906, Feb. 2013.
doi:10.1109/TGRS.2012.2203824