1. Shinohara, N., "The wireless power transmission: inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 1, 337-346, 2012.
doi:10.1002/wene.43
2. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 1, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265
3. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Transactions on Industrial Electronics, Vol. 56, 3060-3068, 2009.
doi:10.1109/TIE.2009.2023633
4. Jiang, C., K. T. Chau, W. Han, and W. Liu, "Development of multilayer rectangular coils for multiple-receiver multiple-frequency wireless power transfer," Progress In Electromagnetics Research, Vol. 163, 15-24, 2018.
5. Kim, J. G., G. Wei, M. H. Kim, J. Y. Jong, and C. Zhu, "A comprehensive study on composite resonant circuit-based wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 65, No. 6, 4670-4680, 2018.
doi:10.1109/TIE.2017.2772207
6. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.
7. Li, C. J. and H. Ling, "Investigation of wireless power transfer using planarized, capacitor-loaded coupled loops," Progress In Electromagnetics Research, Vol. 148, 223-231, 2014.
doi:10.2528/PIER14071705
8. Fan, Y., L. Li, S. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711
9. Zhong, W. X. and S. Y. R. Hui, "Maximum energy efficiency operation of series-series resonant wireless power transfer systems using ON-OFF keying modulation," IEEE Trans. Power Electron., Vol. 33, No. 4, 3595-3603, 2018.
doi:10.1109/TPEL.2017.2709341
10. Zhang, J., X. Yuan, C.Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Trans. Power Electron., Vol. 32, No. 1, 341-352, 2017.
doi:10.1109/TPEL.2016.2526780
11. Kim, J., W. S. Choi, and J. Jeong, "Loop switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, 2013.
doi:10.2528/PIER13012118
12. Lee, S. B., S. Ahn, and I. G. Jang, "Simulation-based feasibility study on the wireless charging railway system with a ferriteless primary module," IEEE Trans. Veh. Technol., Vol. 64, No. 2, 1004-1010, 2017.
doi:10.1109/TVT.2016.2565703
13. Tran, D. H., V. B. Vu, and W. Choi, "Design of a high-efficiency wireless power transfer system with intermediate coils for the On-Board chargers of electric vehicles," IEEE Trans. Power Electron., Vol. 33, No. 1, 175-187, 2018.
doi:10.1109/TPEL.2017.2662067
14. Kong, S., et al. "An investigation of electromagnetic radiated emission and interference from multicoil wireless power transfer systems using resonant magnetic field coupling," IEEE Trans. on Micro. Theory Techn., Vol. 63, No. 3, 833-846, 2015.
doi:10.1109/TMTT.2015.2392096
15. Liu, X. C. and G. F. Wang, "A novel wireless power transfer system with double intermediate resonant coils," IEEE Trans. Ind. Electron., Vol. 63, No. 4, 2174-2180, 2016.
16. Hu, H. and S. V. Georgakopoulos, "Multiband and broadband wireless power transfer systems using the conformal strongly coupled magnetic resonance method," IEEE Trans. Ind. Electron., Vol. 64, No. 5, 3595-3607, 2017.
doi:10.1109/TIE.2016.2569459
17. Wang, M., J. Feng, Y. Shi, and M. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., to be published. DOI 10.1109/TIE.2018.2840485.
18. Zhang, W., C. J.White, M. A. Abraham, and C. C. Mi, "Loosely coupled transformer structure and interoperability study for EV wireless charging systems," IEEE Trans. Power Electron., Vol. 30, No. 11, 6356-6367, 2015.
doi:10.1109/TPEL.2015.2433678
19. Wang, S., D. G. Dorrell, Y. Guo, and M. F. Hsieh, "Inductive charging coupler with assistive coils," IEEE Trans. Magn., Vol. 52, No. 7, 1-4, 2016.
20. Antalunai, S., C. Thongsopa, and T. Thosdeekoraphat, "An increasing the power transmission efficiency of flat spiral coils by using ferrite materials for wireless power transfer applications," International Conference on Electrical Engineering/electronics, 1-4, Nakhon Ratchasima, Thailand, 2014.
21. Mohammad, M., S. Choi, Z. Islam, S. Kwak, and J. Baek, "Core design and optimization for better misalignment tolerance and higher range of wireless charging of PHEV," IEEE Trans. on Transport. Electrific., Vol. 3, No. 2, 445-453, 2017.
doi:10.1109/TTE.2017.2663662
22. Ding, W. and X. Wang, "Magnetically coupled resonant using Mn-Zn ferrite for wireless power transfer," 15th International Conference on Electronic Packaging Technology, 1561-1564, Chengdu, China, 2014.
23. Mohammad, M., S. Kwak, and S. Choi, "Core design for better misalignment tolerance and higher range of wireless charging for HEV," Applied Power Electronics Conference and Exposition (APEC), 1748-1755, Long Beach, CA, USA, 2016.
24. Huang, R., B. Zhang, D. Qiu, and Y. Zhang, "Frequency splitting phenomena of magnetic resonant coupling wireless power transfer," IEEE Trans. Magn., Vol. 50, No. 11, 1-4, 2014.
25. Theilmann, P. T. and P. M. Asbeck, "An analytical model for inductively coupled implantable biomedical devices with ferrite rods," IEEE Trans. Biomed. Circuits Syst., Vol. 3, No. 1, 43-52, 2009.
doi:10.1109/TBCAS.2008.2004776
26. Salas, R. A. and J. Pleite, "Simulation of waveforms of a ferrite Inductor with saturation and power losses," Materials, Vol. 7, No. 3, 1850-1865, 2014.
doi:10.3390/ma7031850