Vol. 74
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-13
Phase Quantized Metasurface Supercells for Wave Manipulation and RCS Reduction
By
Progress In Electromagnetics Research M, Vol. 74, 125-135, 2018
Abstract
Recently, the introduction of surface phase in Snell's law and Huygens' phenomena leads to ultrathin phased surfaces which can tailor the transmission and scattering of the incident wavefront in many ways. In this article, a remodeled Jerusalem cross used as the meta-element whose geometrical parameters are varied to obtain 360° phase variation, and a 3-bit quantization is presented to design phase coded surfaces to manipulate (focusing and splitting) normally incident beam. Further, two 3-bit phase quantized supercells of approximately 2λ length and width are proposed and simulated (3x3 matrix arrangement) to test and compare the scattering properties with traditional chessboard type supercell. Obtained simulated results show diffused reflections for both the models and reduced intensity of four corner lobes in comparison to chessboard supercells (at θ=30˚ and ϕ=45˚). Experimentally recorded monostatic RCS of model-2 prototype has a close agreement with the simulated results and more than 10 dBsm RCS reduction observed from 9 GHz-11 GHz.
Citation
Rajanikanta Swain, and Rabindra Kishore Mishra, "Phase Quantized Metasurface Supercells for Wave Manipulation and RCS Reduction," Progress In Electromagnetics Research M, Vol. 74, 125-135, 2018.
doi:10.2528/PIERM18081606
References

1. Smith, D. R., J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
doi:10.1126/science.1096796

2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

3. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, No. 1, 41, 2007.
doi:10.1038/nphoton.2006.49

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

5. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

6. Capasso, F., "Metasurfaces: From quantum cascade lasers to flat optics," 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-3, IEEE, 2017.

7. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

8. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberrationfree ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Letters, Vol. 12, No. 9, 4932-4936, 2012.
doi:10.1021/nl302516v

9. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, No. 2, 139, 2014.
doi:10.1038/nmat3839

10. Karimi, E., S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Science & Applications, Vol. 3, No. 5, e167, 2014.
doi:10.1038/lsa.2014.48

11. Ma, X., M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, and Z. Zhao, "A planar chiral meta-surface for optical vortex generation and focusing," Scientific Reports, Vol. 5, 10365, 2015.
doi:10.1038/srep10365

12. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Applied Physics Letters, Vol. 108, No. 12, 121903, 2016.
doi:10.1063/1.4944789

13. Zhu, H. L., S. W. Cheung, K. L. Chung, and T. I. Yuk, "Linear-to-circular polarization conversion using metasurface,", Vol. 61, No. 9, 4615-4623, 2013.

14. Chen, H., J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, No. 15, 154504, 2014.
doi:10.1063/1.4869917

15. Estakhri, N. M. and A. Alu, "Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1775-1778, 2014.
doi:10.1109/LAWP.2014.2371894

16. Ni, X., Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science, Vol. 349, No. 6254, 1310-1314, 2015.
doi:10.1126/science.aac9411

17. Ni, X., A. V. Kildishev, and V. M. Shalaev, "Metasurface holograms for visible light," Nature Communications, Vol. 4, 2807, 2013.
doi:10.1038/ncomms3807

18. Minatti, G., M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonz´alez-Ovejero, M. Sabbadini, and S. Maci, "Modulated metasurface antennas for space: Synthesis analysis and realizations," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1288-1300, 2015.
doi:10.1109/TAP.2014.2377718

19. Donda, K. D. and R. S. Hegde, "Rapid design of wide-area heterogeneous electromagnetic metasurfaces beyond the unit-cell approximation," Progress In Electromagnetics Research M, Vol. 60, 1-10, 2017.
doi:10.2528/PIERM17070405

20. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
doi:10.1038/lsa.2014.99

21. Liu, S., T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, and H. Yuan, "Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves," Light: Science & Applications, Vol. 5, No. 5, e16076, 2016.
doi:10.1038/lsa.2016.76

22. Chen, K., Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, "Geometric phase coded metasurface: From polarization dependent directive electromagnetic wave scattering to diffusionlike scattering," Scientific Reports, Vol. 6, 35968, 2016.
doi:10.1038/srep35968

23. Wan, X., M. Q. Qi, T. Y. Chen, and T. J. Cui, "Field-programmable beam reconfiguring based on digitally-controlled coding metasurface," Scientific Reports, Vol. 6, 20663, 2016.
doi:10.1038/srep20663

24. Tymchenko, M., J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alu, "Gradient nonlinear pancharatnam-berry metasurfaces," Physical Review Letters, Vol. 115, No. 20, 207403, 2015.
doi:10.1103/PhysRevLett.115.207403

25. Bahret, W. F., "The beginnings of stealth technology," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 4, 1377-1385, 1993.
doi:10.1109/7.259548

26. Park, M.-J., J. Choi, and S. S. Kim, "Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders," IEEE Transactions on Magnetics, Vol. 36, No. 5, 3272-3274, 2000.
doi:10.1109/20.908766

27. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 748-751, 2012.

28. Chaudhury, B. and S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using three-dimensional computations," IEEE Transactions on Plasma Science, Vol. 37, No. 11, 2116-2127, 2009.
doi:10.1109/TPS.2009.2032331

29. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601

30. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Advanced Materials, Vol. 24, No. 23, OP98-OP120, 2012.

31. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

32. Simms, S. and V. Fusco, "Chessboard reflector for RCS reduction," Electronics Letters, Vol. 44, No. 4, 316-318, 2008.
doi:10.1049/el:20083368

33. Zhao, Y., X. Cao, J. Gao, and W. Li, "Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor," Microwave and Optical Technology Letters, Vol. 56, No. 1, 158-161, 2014.
doi:10.1002/mop.28033

34. Esmaeli, S. H. and S. H. Sedighy, "Wideband radar cross-section reduction by AMC," Electronics Letters, Vol. 52, No. 1, 70-71, 2015.
doi:10.1049/el.2015.3515

35. Mighani, M. and G. Dadashzadeh, "Broadband RCS reduction using a novel double layer chessboard AMC surface," Electronics Letters, Vol. 52, No. 14, 1253-1255, 2016.
doi:10.1049/el.2016.1214

36. Sun, H., C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, "Broadband and broad-angle polarization-independent metasurface for radar cross section reduction," Scientific Reports, Vol. 7, 40782, 2017.
doi:10.1038/srep40782

37. Su, P., Y. Zhao, S. Jia, W. Shi, and H. Wang, "An ultra-wideband and polarization-independent metasurface for RCS reduction," Scientific Reports, Vol. 6, 20387, 2016.
doi:10.1038/srep20387

38. Li, Q. Y., Y. C. Jiao, and G. Zhao, "A novel microstrip rectangular-patch/ring-combination reflectarray element and its application," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1119-1122, 2009.
doi:10.1109/LAWP.2009.2033620

39. Chen, W., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2636-2645, 2015.
doi:10.1109/TAP.2015.2414440

40. Knott, E. F., Radar Cross Section Measurements, Springer, US, 1993.
doi:10.1007/978-1-4684-9904-9