Vol. 80
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-09
Spectral Domain Fast Multipole Method for Solving Integral Equations of Electromagnetic Wave Scattering
By
Progress In Electromagnetics Research M, Vol. 80, 121-131, 2019
Abstract
In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The goal of this study is to investigate the similarities and differences between the spectral domain analysis and conventional FMM formulation. The benefit of the spectral domain analysis such as transforming the convolutional form of the Green's function to a multiplicative form is incorporated in the SD-FMM method. The study focuses on the application of SD-FMM to one-, two-, and three-dimensional electric field integral equation (EFIE). The cases of perfectly electric conducting (PEC) strips, circular perfectly conducting cylinders, and perfectly conductor spheres are analyzed. The results from the SD-FMM method are compared with the results from the conventional FMM and the direct application of Method of Moments (MoM). The SD-FMM results agree well with results from the direct application of MoM.
Citation
Mohammad H. Ahmad, and Dayalan Prajith Kasilingam, "Spectral Domain Fast Multipole Method for Solving Integral Equations of Electromagnetic Wave Scattering," Progress In Electromagnetics Research M, Vol. 80, 121-131, 2019.
doi:10.2528/PIERM18081602
References

1. Harrington, R. F., Field Computation by Moment Method, R. E. Krieger Publ. Com., 1968.

2. Saad, Y., Iterative Methods for Sparse Linear Systems, 1st Ed., PWS, 1996.

3. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635-640, 1986.
doi:10.1109/TAP.1986.1143871

4. Jin, J., Theory and Computation of Electromagnetic Fields, John Wiley & Sons, 2010.
doi:10.1002/9780470874257

5. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "A fast integral-equation solver for electromagnetic scattering problems," IEEE AP-S Int. Antennas Propag. Symp. Dig., Vol. 1, 416-419, Seattle, WA, USA, Jun. 20–24, 1994.

6. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, Sep.–Oct. 1996.
doi:10.1029/96RS02504

7. Rokhlin, V., "Rapid solutions of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, Feb. 1990.
doi:10.1016/0021-9991(90)90107-C

8. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Prop. Mag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

9. Chew, W. C., J. M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

10. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Journal of the Optical Society of America, Vol. 73, No. 4, 811-818, 1981.
doi:10.1364/JOSA.71.000811

11. Chandezon, J., D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," Journal of Optics, Vol. 11, No. 4, 235-241, 1980.
doi:10.1088/0150-536X/11/4/005

12. Van Beurden, M. C., "Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions," Journal of the Optical Society of America A, Vol. 28, No. 11, 226-2278, 2011.
doi:10.1364/JOSAA.28.002269

13. Dilz, R. J. and M. C. van Beurden, "An efficient complex spectral path formulation for simulating the 2D TE scattering problem in a layered medium using Gabor frames," Journal of Computational Physics, Vol. 345, 528-542, 2017.
doi:10.1016/j.jcp.2017.05.034

14. Volakis, J. and K. Sertel, Integral Equation Methods for Electromagnetics, SciTech Publishing, 2012.

15. Grag, R., Analytical and Computational Methods in Electromagnetics, Artech House, 2008.

16. Kythe, K. and M. R. Schaferkotter, Handbook of Computational Methods for Integration, CRC Press, 2005.

17. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818