Vol. 79
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-10-22
An Array Partitioning Scheme of Airborne Phased-MIMO Radar Based on STAP SINR
By
Progress In Electromagnetics Research Letters, Vol. 79, 95-101, 2018
Abstract
An airborne phased-multiple-input-multiple-output (Phased-MIMO) radar with collocated antenna array is a tradeoff of phased array radar and MIMO radar. Its transmitting array is divided into multiple subarrays that are allowed to be overlapped. In this letter, we mainly study the array partitioning scheme of the airborne Phased-MIMO radar with equal uniform linear subarrays that are fully overlapped on the basis of space-time adaptive processing (STAP). A mathematical formula is derived to determine the number of subarrays and the elements in each subarray according to the principle of maximum STAP signal-to-interference-plus-noise ratio (SINR). The SINR performances corresponding to different partitioning schemes are simulated and discussed to demonstrate the effectiveness of the proposed mathematical formula for array partitioning in the sense of maximum STAP SINR.
Citation
Wei Wang, Lin Zou, and Xuegang Wang, "An Array Partitioning Scheme of Airborne Phased-MIMO Radar Based on STAP SINR," Progress In Electromagnetics Research Letters, Vol. 79, 95-101, 2018.
doi:10.2528/PIERL18081503
References

1. Hassanien, A. and S. A. Vorobyov, "Phased-MIMO radar: A tradeoff between phased-array and MIMO radars," IEEE Trans. Signal Process., Vol. 58, No. 6, 3137-3151, Jun. 2010.
doi:10.1109/TSP.2010.2043976

2. Melvin, W. L., "A stap overview," IEEE Aerospace and Electronic Systems Magazine, Vol. 19, No. 1, 19-35, Jan. 2004.
doi:10.1109/MAES.2004.1263229

3. Klemm, R., "Principles of space-time adaptive processing,", The Institution of Engineering and Technology, London, UK, 2006.

4. Guerci, J. R., Space-time Adaptive Processing for Radar, Artech House, Boston, USA, 2003.

5. Ahmadi, M. and K. Mohamed-pour, "Space-time adaptive processing for phased-multiple-input-multiple-output radar in the non-homogeneous clutter environment," IET Radar, Sonar and Navigation, Vol. 8, No. 6, 585-596, Jun. 2014.
doi:10.1049/iet-rsn.2013.0246

6. Xie, W., X. Zhang, Y. Wang, and Y. Zhu, "Estimation of clutter degrees of freedom for airborne multiple-input multiple-output-phased array radar," IET Radar, Sonar and Navigation, Vol. 7, No. 6, 652-657, Jun. 2013.
doi:10.1049/iet-rsn.2012.0165

7. Feng, W., Y. Zhang, and X. He, "Complexity reduction and clutter rank estimation for MIMO-phased STAP radar with subarrays at transmission," Digital Signal Processing, Vol. 60, 296-306, 2017.
doi:10.1016/j.dsp.2016.10.004

8. Ismail, N. E., S. H. Mahmoud, A. S. Hafez, and T. Reda, "A new phased MIMO radar partitioning schemes," 2014 IEEE Aerospace Conference, 1-7, Big Sky, MT, USA, 2014.

9. Alieldin, A., Y. Huang, and W. M. Saad, "Optimum partitioning of a Phased-MIMO radar array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2287-2290, 2017.
doi:10.1109/LAWP.2017.2714866

10. Khan, W., I. M. Qureshi, A. Basit, and M. Zubair, "Hybrid phased MIMO radar with unequal subarrays," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1702-1705, 2015.
doi:10.1109/LAWP.2015.2419279