Vol. 80
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-11-20
Compact Microstrip BPF with High Selectivity Using Extended Tapped Lines
By
Progress In Electromagnetics Research Letters, Vol. 80, 39-46, 2018
Abstract
This paper proposes a compact microstrip bandpass filter (BPF) with high selectivity. A folded stepped-impedance resonator (SIR) of which the high impedance part is realized by a coplanar waveguide on the ground layer is introduced to the filter design for miniaturization. Furthermore, source-load coupling is implemented by extended tapped lines (ETLs). High selectivity with four transmission zeros (TZs) can be achieved. The analysis of the filter is presented based on atransmission line circuit model and even- and odd-mode analysis method. An experimental filter with the size of 0.15λg*0.13λg (where λg is the guide wave-length at the center frequency) is designed to validate our methods.
Citation
Yi-Qiang Gao, Wei Shen, Liang Wu, and Xiao-Wei Sun, "Compact Microstrip BPF with High Selectivity Using Extended Tapped Lines," Progress In Electromagnetics Research Letters, Vol. 80, 39-46, 2018.
doi:10.2528/PIERL18081303
References

1. Ding, J. Q., D. Liu, S. C. Shi, and W. Wu, "W-band quasi-elliptical waveguide filter with cross-coupling and source-load coupling," Electronics Letters, Vol. 52, No. 23, 1960-1961, 2016.
doi:10.1049/el.2016.3245

2. Wan, X. W. and M. Q. Li, "Tri-section stepped-impedance resonator filter with controllable mixed electric and magnetic cross-coupling," Electronics Letters, Vol. 53, No. 4, 255-256, 2017.
doi:10.1049/el.2016.4215

3. Wu, C. H., C. H. Wang, Y. S. Lin, and C. H. Chen, "Parallel-coupled coplanar-waveguide bandpass filter with multiple transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 118-120, 2007.
doi:10.1109/LMWC.2006.890334

4. Zhang, X. C., Z. Y. Yu, and J. Xu, "Design of microstrip dual-mode filters based on source-load coupling," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 10, 677-679, 2008.
doi:10.1109/LMWC.2008.2003461

5. Li, L. and Z. F. Li, "Application of inductive source-load coupling in microstrip dual-mode filter design," Electronics Letters, Vol. 46, No. 2, 141-142, 2010.
doi:10.1049/el.2010.3058

6. Dai, G. L., Y. X. Guo, and M. Y. Xia, "Design of compact bandpass filter with improved selectivity using source-load coupling," Electronics Letters, Vol. 46, No. 7, 505-506, 2010.
doi:10.1049/el.2010.2841

7. Xu, Z. Q., P. Wang, K.W. Qian, and Z. Tian, "Substrate integrated waveguide filter with embedded mixed source-load coupling," Electronics Letters, Vol. 49, No. 23, 1464-1465, 2013.
doi:10.1049/el.2013.2572

8. Xu, Z., Y. Shi, C. Xu, and P. Wang, "A novel dual mode substrate integrated waveguide filter with mixed source-load coupling (MSLC)," Progress In Electromagnetics Research, Vol. 136, 595-606, 2013.
doi:10.2528/PIER12121505

9. Deng, H. W., F. Liu, T. Xu, L. Sun, and Y. F. Xue, "Compact and high selectivity dual-mode microstrip BPF with frequency-dependent source-load coupling," Electronics Letters, Vol. 54, No. 4, 219-221, 2018.
doi:10.1049/el.2017.4160

10. Li, L. and Z. Li, "Side-coupled shorted microstrip line for compact quasi-elliptic wideband bandpass filter design," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 6, 322-324, 2010.
doi:10.1109/LMWC.2010.2047516

11. Zhu, L., S. Sun, and R. Li, Microwave Bandpass Filters for Wideband Communications, Chapters 2 and 3, 18–84, John Wiley & Sons. Inc., 2012.