Vol. 79
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-09-19
A Cavity-Backed Wideband Circularly Polarized Crossed Bowtie Dipole Antenna with Sequentially Rotated Parasitic Elements
By
Progress In Electromagnetics Research Letters, Vol. 79, 1-7, 2018
Abstract
A cavity-backed crossed bowtie dipole antenna for wideband circularly polarization (CP) is proposed in this letter. By introducing four inverted L-shaped parasitic elements with sequentially rotated angles, two extra CP modes areexcited, thus greatly broadening the 3-dB Axial-ratio (AR) bandwidth (BW) of the antenna. The proposed antenna is simulated, fabricated and measured. Results show that the antenna generates a 10-dB impedance bandwidth (IBW) of 91.4% (1.2-3.22 GHz) and a 3-dB AR bandwidth of 74.1% (1.37-2.95 GHz). In addition, the antenna achieves a unidirectional radiation pattern with a stable gain of 6.52-9.27 dBi over the whole CP operating band.
Citation
Yapeng Li, Zhipeng Zhao, Jinhai Liu, and Ying-Zeng Yin, "A Cavity-Backed Wideband Circularly Polarized Crossed Bowtie Dipole Antenna with Sequentially Rotated Parasitic Elements," Progress In Electromagnetics Research Letters, Vol. 79, 1-7, 2018.
doi:10.2528/PIERL18080802
References

1. Xu, R., J. Y. Li, and K. Wei, "A broadband circularly polarized crossed-dipole antenna," IEEE Transactions on Antennas & Propagation, Vol. 64, 4509-4513, 2016.
doi:10.1109/TAP.2016.2588523

2. Ding, X., Z. Zhao, Y. Yang, et al. "Broadband unidirectional printed antenna with quad-folded dipoles for circular polarization," Microwave & Optical Technology Letters, Vol. 57, 2871-2876, 2015.
doi:10.1002/mop.29465

3. Baik, J. W., K. J. Lee, W. S. Yoon, et al. "Circularly polarised printed crossed dipole antennas with broadband axial ratio," Electronics Letters, Vol. 44, 785-786, 2008.
doi:10.1049/el:20080794

4. Zhou, C. and S. W. Cheung, "High gain windmill-shaped CP antenna using high-order mode and ground-edge diffraction," IEEE Antennas & Wireless Propagation Letters, Vol. 99, 1-1, 2018.

5. Tran, H. H. and I. Park, "Wideband circularly polarized cavity-backed asymmetric crossed bowtie dipole antenna," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 358-361, 2016.
doi:10.1109/LAWP.2015.2445939

6. Qu, S. W., C. H. Chan, and Q. Xue, "Wideband and high-gain composite cavity-backed crossed triangular bowtie dipoles for circularly polarized radiation," IEEE Transactions on Antennas & Propagation, Vol. 58, 3157-3164, 2010.
doi:10.1109/TAP.2010.2055792

7. Tran, H. H., I. Park, and T. K. Nguyen, "Circularly polarized bandwidth-enhanced crossed dipole antenna with a simple single parasitic element," IEEE Antennas & Wireless Propagation Letters, Vol. 99, 1-1, 2017.
doi:10.1109/LAWP.2017.2676165

8. Baik, J. W., T. H. Lee, S. Pyo, et al. "Broadband circularly polarized crossed dipole with parasitic loop resonators and its arrays," IEEE Transactions on Antennas & Propagation, Vol. 59, 80-88, 2011.
doi:10.1109/TAP.2010.2090463

9. Feng, G., L. Chen, X. Xue, et al. "Broadband circularly polarized crossed-dipole antenna with a single asymmetrical cross-loop," IEEE Antennas & Wireless Propagation Letters, Vol. 99, 1-1, 2017.

10. Wu, J., X. Ren, Z. Li, and Y.-Z. Yin, "Modified square slot antennas for broadband circular polarization," Progress In Electromagnetics Research C, Vol. 38, 1-14, 2013.
doi:10.2528/PIERC13020105

11. Chen, J. and J. Row, "A simple design for slotted patch antennas with broadband circular polarization," Microwave & Optical Technology Letters, Vol. 57, 1854-1857, 2015.
doi:10.1002/mop.29197