Vol. 76
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-19
Symmetric Extension of Steering Vectors and Beamforming
By
Progress In Electromagnetics Research M, Vol. 76, 19-29, 2018
Abstract
Aiming at problems that interpolated array has large amount of computation and high sensitivity to transformation angle and interpolated step, a new array extension algorithm which is symmetric extension steering vector is proposed. In this paper, two properties of the conjugate of received data and the source covariance matrix being a real diagonal matrix are exploited to extend the dimensions of the covariance matrix. However, the essence of this extension method is the symmetric extension of the steering vector. The high complexity and degradation of the performance of interpolated array beamforming caused by the sensitivity of angle and interpolated step are improved. Numerical simulations confirm the validity of the proposed algorithm. Compared with existing algorithms, the proposed algorithm is not affected by the angle range of transformation and interpolated step. Besides, the complexity of array extension using this proposed algorithm is much lower than the interpolated transformation method.
Citation
Shexiang Ma, and Fei Pan, "Symmetric Extension of Steering Vectors and Beamforming," Progress In Electromagnetics Research M, Vol. 76, 19-29, 2018.
doi:10.2528/PIERM18073101
References

1. Guo, T., Y. Wang, and L. Zhang, "Coprime array as a new method of extended aperture," Ship Science and Technology, Vol. 38, No. 12, 135-137, 2016.

2. Friedlander, B., "Direction finding using an interpolated array," IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, 2951-2954, 1990.
doi:10.1109/ICASSP.1990.116245

3. Lee, T.-S. and T.-T. Lin, "Adaptive beamforming with interpolated arrays for multiple coherent interferers," Signal Processing, Vol. 57, No. 2, 177-194, 1997.
doi:10.1016/S0165-1684(96)00194-6

4. Zhang, Y., Z. Zou, Z. Lv, et al. "Beamforming of coherent signals based on uniform circular array," Journal of Electronic Science and Technology, Vol. 36, No. 1, 20-23, 2007.

5. Yang, P., F. Yang, Z. P. Nie, et al. "Robust adaptive beamformer using interpolated arrays," Progress In Electromagnetics Research B, Vol. 23, 215-228, 2010.
doi:10.2528/PIERB10061504

6. Li, W., Y. Li, et al. "Adaptive beamforming method for ARC length based virtual antenna array," IEEE Conference Publications, 135-139, 2011.

7. Friedlander, B. and J. Weissa, "Direction finding using spatial smoothing with interpolated arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 2, 574-587, 1992.
doi:10.1109/7.144583

8. Pesavento, M., A. B. Gershman, and Z. Q. Luo, "Robust array interpolation using second-order cone programming," Signal Processing Letters, Vol. 9, No. 1, 8-11, 2002.
doi:10.1109/97.988716

9. Hyberg, P., M. Jansson, and B. Ottersten, "Array mapping: optimal transformation matrix design," IEEE International Conference on Acoustics Speech, and Signal Processing, Vol. 3, 2905-2908, 2002.

10. Hyberg, P., M. Jansson, and B. Ottersten, "Array interpolation and bias reduction," IEEE Transactions on Signal Processing, Vol. 52, No. 10, 2711-2720, 2004.
doi:10.1109/TSP.2004.834402

11. Tayem, N. and H. M. Kwon, "Conjugate ESPRIT (C-SPRIT)," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2618-2624, 2004.
doi:10.1109/TAP.2004.834385

12. Kikuchi, S., H. Tsuji, and A. Sano, "Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 35-40, 2006.
doi:10.1109/LAWP.2005.863610

13. Gu, J.-F. and P. Wei, "Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 553-556, 2007.
doi:10.1109/LAWP.2007.907913

14. Nie, X. and P. Wei, "Array aperture extension algorithm for 2-D DOA estimation with L-shaped array," Progress In Electromagnetics Research Letters, Vol. 52, 63-69, 2015.
doi:10.2528/PIERL15011502

15. Dong, Y.-Y., C.-X. Dong, X. Jin, and G.-Q.- Zhao, "Computationally efficient 2-D DOA estimation for L-shaped array with automatic pairing," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1669-1672, 2016.
doi:10.1109/LAWP.2016.2521785

16. Li, J., D. Li, D. Jiang, and X. Zhang, "Extended-aperture unitary root MUSIC-based DOA estimation for coprime array," IEEE Communications Letters, Vol. 22, No. 4, 752-755, 2018.
doi:10.1109/LCOMM.2018.2802491

17. Dogan, M. C. and J. M. Mendel, "Application of cumulants to array processing - Part I: Aperture extension and array calibration," IEEE Transactions on Signal Processing, Vol. 43, No. 5, 1200-1216, 1995.
doi:10.1109/78.382404

18. Mainkar, P. M., G. N. Jagtap, and G. N. Mulay, "Analysis of minimum variance distortionless response and least mean square beamforming algorithm for smart antenna," 2016 International Conference on Internet of Things and Applications (IOTA), 213-216, 2016.
doi:10.1109/IOTA.2016.7562724

19. Horowitz, L. L., H. Blatt, et al. "Controlling adaptive antenna arrays with the sample matrix inversion algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 15, No. 6, 840-848, 1979.
doi:10.1109/TAES.1979.308769

20. Capon, J., "High-resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, Vol. 57, No. 8, 1408-1418, 1969.
doi:10.1109/PROC.1969.7278