Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-11
Accurate Evaluation of the Conductor Loss in Rectangular Microstrip Patch Reflectarrays
By
Progress In Electromagnetics Research M, Vol. 75, 159-166, 2018
Abstract
In the moment method solution of the integral equations for currents of a rectangular microstrip patch reflectarray, the Leontovich boundary condition is employed to determine the conductor loss. If the basis functions contain edge conditions that approach infinity, the moment matrix elements will have diverging integrals in the Galerkin technique. In this paper, we present a criterion to stop the evaluation of these integrals at a distance before the edge, thereby avoiding the divergence problem. The stopping distance derived here is found to work for a range of values of permittivity, loss tangent, and thickness of the substrate, polarization, angles of incidence of the plane wave source, and also for superstrates. Our computed results are in good agreement with measured results and those computed by HFSS.
Citation
Sembiam Rajagopal Rengarajan, and Richard E. Hodges, "Accurate Evaluation of the Conductor Loss in Rectangular Microstrip Patch Reflectarrays," Progress In Electromagnetics Research M, Vol. 75, 159-166, 2018.
doi:10.2528/PIERM18072606
References

1. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarray," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 287-296, Feb. 1997.
doi:10.1109/8.560348

2. Rengarajan, S. R., "Choice of basis functions for accurate characterization of infinite array of microstrip reflectarray elements," IEEE Antennas Wireless Propag. Lett., Vol. 4, 47-50, 2005.
doi:10.1109/LAWP.2005.844127

3. Mosig, J., "Arbitrary shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Antennas Propag., Vol. 36, No. 2, 314-323, Feb. 1988.

4. Van Deventer, T. E., L. P. B. Katehi, and A. C. Cangellaris, "Analysis of conductor losses in high-speed interconnects," IEEE Trans. Microw. Theory Techn., Vol. 42, No. 1, 78-83, Jan. 1994.
doi:10.1109/22.265532

5. Lewin, L., "A method of avoiding edge current divergence in perturbation loss calculations," IEEE Trans. Microw. Theory Techn., Vol. 32, No. 7, 717-719, Jul. 1984.
doi:10.1109/TMTT.1984.1132762

6. Barsotti, E. L., E. F. Kuester, and J. M. Dunn, "A simple method to account for edge in the conductor loss in microstrip," IEEE Trans. Microw. Theory Techn., Vol. 39, No. 1, 98-106, Jan. 1991.
doi:10.1109/22.64611

7. Theron, I. P. and J. H. Cloete, "On the surface impedance used to model the conductor losses of microstrip structures," IEE Proceedings on Microwaves Antennas and Propag., Vol. 142, No. 1, 35-40, Feb. 1995.
doi:10.1049/ip-map:19951652

8. Rajagopalan, H. and Y. Rahmat-Samii, "Dielectric and conductor loss quantification for microstrip reflectarray: simulation and measurements," IEEE Trans. Antennas and Propag., Vol. 56, No. 4, 1192-1196, Apr. 2008.
doi:10.1109/TAP.2008.919225

9. http://www.ansys.com.

10. Richards, W. F., Y. T. Lo, and D. D. Harrison, "An improved theory for microstrip antennas and applications," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 38-46, Jan. 1991.
doi:10.1109/TAP.1981.1142524