Vol. 80
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-11-12
Reflectionless High-Selective Bandpass Filter Based on Acoustic Wave Resonators
By
Progress In Electromagnetics Research Letters, Vol. 80, 15-22, 2018
Abstract
Reflective filters are characterized by a frequency response with good matching at the band of interest and usually reactive impedance out of those frequencies which may adversely affect the system performance. On the other hand, reflectionless filters are characterized by good matching characteristic not only at the interest frequencies, but in the whole frequency spectrum which improves the overall linearity, efficiency, and reduces instability scenarios at the system level. Although several reflectionless structures can be found in the literature, the concatenation of different reflectionless sections, combined with the use of acoustic resonators has not been exploited yet. The particular electrical behavior of acoustic wave resonators, where two different resonant frequencies are found, allow to obtain a frequency response with high selectivity due to the presence of transmission zeros below and above the passband. A bandpass filter has been designed following the described procedure with a fractional bandwidth FBW = 2%, a pair of transmission zeros below and above the bandpass, and an improved out-of-band rejection with respect conventional topologies.
Citation
Jordi Verdú Tirado, Daniel Ulinic, and Pedro de Paco, "Reflectionless High-Selective Bandpass Filter Based on Acoustic Wave Resonators," Progress In Electromagnetics Research Letters, Vol. 80, 15-22, 2018.
doi:10.2528/PIERL18072407
References

1. Chappell, W. J., E. J. Naglich, C. Maxey, and A. C. Guyette, "Putting the radio in software-defined radio: Hardware developments for adaptable RF systems," Proceedings of the IEEE, Vol. 102, 307-320, 2014.
doi:10.1109/JPROC.2014.2298491

2. Morgan, M. A. and T. A. Boyd, "Theoretical and experimental study of a new class of reflectionless filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 1214-1221, 2011.
doi:10.1109/TMTT.2011.2113189

3. Morgan, M. A. and T. A. Boyd, "Reflectionless filter structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 1263-1271, 2015.
doi:10.1109/TMTT.2015.2403841

4. Psychogiou, D. and R. Gomez-Garcia, "Reflectionless adaptive RF filters: Bandpass, bandstop and cascade designs," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 4593-4605, 2017.
doi:10.1109/TMTT.2017.2734086

5. Lee, T.-H., B. Lee, and J. Lee, "First-order reflectionless lumped-element lowpass filter (LPF) and bandpass filter (BPF) design," IEEE MTT-S International Microwave Symposium (IMS), 1-4, 2016.

6. Morimoto, Y., T. Yuasa, T. Owada, Y. Tahara, H. Miyashita, M. Miyazaki, M. Memarian, and T. Itoh, "A multiharmonic absorption circuit using quasi-multilayered striplines for RF power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 109-118, 2017.
doi:10.1109/TMTT.2016.2614929

7. Verdu, J., I. Evdokimova, P. de Paco, T. Bauer, and K. Wagner, "Synthesis methodology for the design of acoustic wave stand-alone ladder filters, duplexers and multiplexers," IEEE International Ultrasonics Symposium, 2017.

8. Triano, A., J. Verdu, P. de Paco, T. Bauer, and K. Wagner, "Relation between electromagnetic coupling effects and network synthesis for aw ladder type filters," IEEE International Ultrasonics Symposium, 2017.

9. Larson III, J., P. Bradley, S. Wartenberg, and R. Ruby, "Modified butterworth-Van dyke circuit for FBAR resonators and automated measurement system," IEEE International Ultrasonics Symposium, 2000.

10. Gimenez, A., J. Verdu, and P. De Paco, "General synthesis methodology for the design of acoustic wave ladder filters and duplexers," IEEE Access, Vol. 6, 1-11, 2011.

11. Gomez-Garcia, R., M. Sanchez-Renedo, B. Jarry, J. Lintignat, and B. Barelaud, "A class of microwave transversal signal-interference dual-passband planar filters," IEEE Microwave and Wireless Components Letters, Vol. 19, 158-160, 2009.
doi:10.1109/LMWC.2009.2013738

12. Menendez, O., P. de Paco, E. Corrales, and J. Verdu, "Procedure for the design of Ladder BAW Filters taking electrodes into account," Progress In Electromagnetics Research Letters, Vol. 7, 127-137, 2009.
doi:10.2528/PIERL09031605

13. Verdu, J., P. de Paco, and O. Menendez, "Electric equivalent circuit for the thickened edge load solution in a Bulk Acoustic Wave Resonator," Progress in Electromagnetics Research M, Vol. 11, 13-23, 2010.
doi:10.2528/PIERM09121104

14. Wang, H., J. Chen, Y. Shi, T. Omori, C. Ahn, and K. Hashimoto, "Design of ladder-type SAW/BAW filters with constant group delay," IEEE International Ultrasonics Symposium, 345-348, 2011.