Vol. 163
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-09-07
Broadband Point Source Green's Function in a One-Dimensional Infinite Periodic Lossless Medium Based on BBGFL with Modal Method
By
Progress In Electromagnetics Research, Vol. 163, 51-77, 2018
Abstract
In this paper we calculate Green's function of a single point source in a one-dimensional infinite periodic lossless medium. The method is based on Broadband Green's Functions with Low Wavenumber Extractions (BBGFL) that express the Green's functions in terms of band solutions that are wavenumber independent. The converegnce of the band expansions are accelerated by a low wavenumber extraction with the wavenumber chosen at the mid-bandgap. The choice of mid-bandgap means that the extracted low wavenumber Green's function can be calculated with very few number of layers. The broadband Green's functions are illustrated for stopband, passband and close to the bandedge. For the case of passband and close to band edge, a modal method is used with first order and second order pole extractions respectively. The modal terms are extracted and integrated analytically. The calculated solutions of single point source Green's functions are compared with the scattering solutions of multilayers using as many as 200,000 layers for the case of passband and near bandedge. The BBGFL computed solutions are in good agreement with those of scattering solutions for stopband, passband, and close to the bandedge.
Citation
Leung Tsang, Kung-Hau Ding, and Shurun Tan, "Broadband Point Source Green's Function in a One-Dimensional Infinite Periodic Lossless Medium Based on BBGFL with Modal Method," Progress In Electromagnetics Research, Vol. 163, 51-77, 2018.
doi:10.2528/PIER18071802
References

1. Tai, C. T., Dyadic Green’s Function in Electromagnetic Theory, International Textbook, Scranton, PA, 1975.

2. Felsen, L. P. and N.Marcuvitz, Radiation and Scattering of Waves, Prentice Hall, Englewood Cliffs, NJ, 1973.

3. Kong, J. A., Electromagnetic Wave Theory, 2nd Ed., John Wiley & Sons, New York, 1990.

4. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New York, 1985.

5. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

6. Tsang, L. and S. Huang, "Broadband Green’s function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress In Electromagnetics Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605

7. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green’s function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901

8. Huang, S. and L. Tsang, "Fast electromagnetic analysis of emissions from printed circuit board using broadband Green’s function method," IEEE Trans. Electromagn. Compat., Vol. 58, 1642-1652, 2016.
doi:10.1109/TEMC.2016.2565584

9. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green’s function with low wavenumber extraction (BBGFL)," Opt. Express, Vol. 24, 945-965, 2016.
doi:10.1364/OE.24.000945

10. Liao, T.-H., K.-H. Ding, and L. Tsang, "High order extractions of broadband Green’s function with low wavenumber extractions for arbitrary shaped waveguide," Progress In Electromagnetics Research, Vol. 158, 7-20, 2017.
doi:10.2528/PIER16101003

11. Tan, S. and L. Tsang, "Green’s functions, including scatterers, for photonic crystals and metamaterials," J. Opt. Soc. Am. B, Vol. 34, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450

12. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green’s function," Opt. Lett., Vol. 42, 4667-4670, 2017.
doi:10.1364/OL.42.004667

13. Tsang, L. W. and S. Huang, "Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green’s function technique,", Patent 9,946,825, issued April 17, 2018.

14. Tsang, L., K.-H. Ding, T.-H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green’s function with higher order low wavenumber extractions," IEEE Trans. Electromagn. Compat., Vol. 60, 16-25, 2018.
doi:10.1109/TEMC.2017.2727958

15. Kwek, W., L. Tsang, K.-H. Ding, and T.-H. Liao, "Broadband Green’s function with higher order extractions for arbitrary shaped waveguide obeying Neumann boundary conditions," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compa, 72-75, IEEE, 2018.
doi:10.1109/ISEMC.2018.8393741

16. Tan, S. and L. Tsang, "Effects of localized defects/sources in a periodic lattice using Green’s function of periodic scatterers ," 2108 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Boston, MA, USA.

17. Tsang, L. W. and S. Tan, "Full wave simulations of photonic crystals and metamaterials using the broadband Ggreen’s functions,", U.S. Patent Application 15/798,148, filed May 3, 2018.

18. Zhang, W., C. T. Chan, and P. Sheng, "Multiple scattering theory and its application to photonic band gap systems consisting of coated spherers," Opt. Express, Vol. 8, 203-208, 2001.
doi:10.1364/OE.8.000203

19. Ergul, E., T. Malas, and L. Gurel, "Analysis of dielectric photonic-crystal problems with MLFMA and Schur-complement preconditioners," J. Lightw. Technol., Vol. 29, 888-897, 2011.
doi:10.1109/JLT.2011.2106196

20. Yasumoto, K., Electromagnetic Theory and Applications for Photonic Crystals, CRC Press, 2006.

21. Yariv, A. and P. Yeh, Optical Waves in Crystals, John Wiley, New Jersey, 2003.

22. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light, Princeton University, 2011.

23. Luo, M. and Q. H. Liu, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Phys. Rev. E, Vol. 80, 056702, 2009.
doi:10.1103/PhysRevE.80.056702

24. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express, Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173

25. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York, 1976.

26. Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, 2001.
doi:10.1007/978-3-662-14324-7