1. Tai, C. T., Dyadic Green’s Function in Electromagnetic Theory, International Textbook, Scranton, PA, 1975.
2. Felsen, L. P. and N.Marcuvitz, Radiation and Scattering of Waves, Prentice Hall, Englewood Cliffs, NJ, 1973.
3. Kong, J. A., Electromagnetic Wave Theory, 2nd Ed., John Wiley & Sons, New York, 1990.
4. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New York, 1985.
5. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.
6. Tsang, L. and S. Huang, "Broadband Green’s function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress In Electromagnetics Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605
7. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green’s function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901
8. Huang, S. and L. Tsang, "Fast electromagnetic analysis of emissions from printed circuit board using broadband Green’s function method," IEEE Trans. Electromagn. Compat., Vol. 58, 1642-1652, 2016.
doi:10.1109/TEMC.2016.2565584
9. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scatterers using broadband Green’s function with low wavenumber extraction (BBGFL)," Opt. Express, Vol. 24, 945-965, 2016.
doi:10.1364/OE.24.000945
10. Liao, T.-H., K.-H. Ding, and L. Tsang, "High order extractions of broadband Green’s function with low wavenumber extractions for arbitrary shaped waveguide," Progress In Electromagnetics Research, Vol. 158, 7-20, 2017.
doi:10.2528/PIER16101003
11. Tan, S. and L. Tsang, "Green’s functions, including scatterers, for photonic crystals and metamaterials," J. Opt. Soc. Am. B, Vol. 34, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450
12. Tan, S. and L. Tsang, "Scattering of waves by a half-space of periodic scatterers using broadband Green’s function," Opt. Lett., Vol. 42, 4667-4670, 2017.
doi:10.1364/OL.42.004667
13. Tsang, L. W. and S. Huang, "Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green’s function technique,", Patent 9,946,825, issued April 17, 2018.
14. Tsang, L., K.-H. Ding, T.-H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green’s function with higher order low wavenumber extractions," IEEE Trans. Electromagn. Compat., Vol. 60, 16-25, 2018.
doi:10.1109/TEMC.2017.2727958
15. Kwek, W., L. Tsang, K.-H. Ding, and T.-H. Liao, "Broadband Green’s function with higher order extractions for arbitrary shaped waveguide obeying Neumann boundary conditions," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compa, 72-75, IEEE, 2018.
doi:10.1109/ISEMC.2018.8393741
16. Tan, S. and L. Tsang, "Effects of localized defects/sources in a periodic lattice using Green’s function of periodic scatterers ," 2108 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Boston, MA, USA.
17. Tsang, L. W. and S. Tan, "Full wave simulations of photonic crystals and metamaterials using the broadband Ggreen’s functions,", U.S. Patent Application 15/798,148, filed May 3, 2018.
18. Zhang, W., C. T. Chan, and P. Sheng, "Multiple scattering theory and its application to photonic band gap systems consisting of coated spherers," Opt. Express, Vol. 8, 203-208, 2001.
doi:10.1364/OE.8.000203
19. Ergul, E., T. Malas, and L. Gurel, "Analysis of dielectric photonic-crystal problems with MLFMA and Schur-complement preconditioners," J. Lightw. Technol., Vol. 29, 888-897, 2011.
doi:10.1109/JLT.2011.2106196
20. Yasumoto, K., Electromagnetic Theory and Applications for Photonic Crystals, CRC Press, 2006.
21. Yariv, A. and P. Yeh, Optical Waves in Crystals, John Wiley, New Jersey, 2003.
22. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light, Princeton University, 2011.
23. Luo, M. and Q. H. Liu, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Phys. Rev. E, Vol. 80, 056702, 2009.
doi:10.1103/PhysRevE.80.056702
24. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express, Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173
25. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York, 1976.
26. Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, 2001.
doi:10.1007/978-3-662-14324-7