Vol. 164
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-11-20
A Method for Effective Permittivity and Conductivity Mapping of Biological Scenarios via Segmented Contrast Source Inversion
By
Progress In Electromagnetics Research, Vol. 164, 1-15, 2019
Abstract
Quantitative estimation of both conductivity and permittivity of biological tissues is essential in many biomedical applications, ranging from therapeutic treatments to safety assessment of medical devices and dosimetry. Typically, the electromagnetic field distribution inside the body is predicted based on available ex-vivo measured electrical properties. Unfortunately, these values may be quite different from the ones measured in-vivo and cannot account for the differences among individuals. As a result, their use can introduce significant errors affecting therapeutic treatments and dose estimation. To cope with this problem, in this paper a new approach for estimation of effective electrical properties of human tissues is introduced. The proposed strategy is based on the solution of an inverse scattering problem (by means of a contrast source inversion scheme) and the use of an effective representation of the unknowns based on spatial priors derived by magnetic resonance imaging or computed tomography. The approach is tested in controlled conditions against simulated single frequency data and realistic and anthropomorphic head and neck phantoms. Moreover, the inherent advantages have been assessed in the framework of hyperthermia treatment planning.
Citation
Martina Bevacqua, Gennaro G. Bellizzi, Tommaso Isernia, and Lorenzo Crocco, "A Method for Effective Permittivity and Conductivity Mapping of Biological Scenarios via Segmented Contrast Source Inversion," Progress In Electromagnetics Research, Vol. 164, 1-15, 2019.
doi:10.2528/PIER18071704
References

1. Durney, C. H., "Electromagnetic dosimetry for models of humans and animals: A review of theoretical and numerical techniques," Proceedings of the IEEE, Vol. 68, No. 1, 33-40, 1980.
doi:10.1109/PROC.1980.11578

2. De Greef, M., H. P. Kok, D. Correia, A. Bel, and J. Crezee, "Uncertainty in hyperthermia treatment planning: The need for robust system design," Phys. Med. Biol., Vol. 56, No. 11, 3233-3250, 2011.
doi:10.1088/0031-9155/56/11/005

3. Bellizzi, G. G., L. Crocco G. M. Battaglia, and T. Isernia, "Multi-frequency constrained SAR focusing for patient specific hyperthermia treatment," IEEE JERM, Vol. 1, No. 2, 74-80, 2017.

4. Bellizzi, G. G., D. A. M. Iero, L. Crocco, and T. Isernia, "3-D field intensity shaping: The scalar case," IEEE Ant. and Wir. Prop. Letters, 2018.

5. Chow, E. Y., C. L. Yang, Y. Ouyang, A. L. Chlebowski, P. P. Irazoqui, and W. J. Chappell, "Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors," IEEE Trans. on Antennas and Propag., Vol. 59, No. 6, 2379-2387, 2011.
doi:10.1109/TAP.2011.2144551

6. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

7. Fortunati, V., R. F. Verhaart, F. van der Lijn, W. J. Niessen, J. F. Veenland, M. M. Paulides, and T. van Walsum, "Tissue segmentation of head and neck CT images for treatment planning: A multi-atlas approach combined with intensity modeling," Med. Phys., Vol. 7, No. 40, 2013.

8. Halter, R. J., T. Zhou, P. M. Meaney, A. Hartov, R. J. Barth Jr., K.M. Rosenkranz, W. A. Wells, C. A Kogel, A. Borsic, E. J. Rizzo, and K. D. Paulsen, "The correlation of in-vivo and ex-vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience," Physiol. Meas., Vol. 30, No. 6, S121, 2009.
doi:10.1088/0967-3334/30/6/S08

9. O’Rourke, A. P., M. Lazebnik, J. M. Bertram, M. C. Converse, S. C. Hagness, J. G. Webster, and D. M. Mahvi, "Dielectric properties of human normal, malignant and cirrhotic liver tissue: in-vivo and ex-vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe," Phys. Med. Biol., Vol. 52, 4707-19, 2007.
doi:10.1088/0031-9155/52/15/022

10. Salahuddin, S., A. La Gioia, M. A. Elahi, E. Porter, M. O’Halloran, and A. Shahzad, "Comparison of in-vivo and ex-vivo dielectric properties of biological tissues," International Conference on Electromagnetics in Advanced Applications, 582-585, 2017.

11. Haemmerich, D., O. R. Ozkan, J. Z. Tsai, S. T. Staelin, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster, "Changes in electrical resistivity of swine liver after occlusion and postmortem," Med. Biol. Eng. Comput., No. 40, 29-33, 2002.
doi:10.1007/BF02347692

12. Meaney, P. M., T. Zhou, D. Goodwin, A. Golnabi, E. A. Attardo, and K. D. Paulsen, "Bone dielectric property variation as a function of mineralization at microwave frequencies," International Journal of Biomedical Imaging, Vol. 2012, Article ID 649612, 9 pages, 2012.

13. Gabriel, C. and A. Peyman, Chapter 69 - Dielectric Properties of Biological Tissues; Variation with Age, Editors, Jeffrey L. Ram, P. Michael Conn, Conn's Handbook of Models for Human Aging, 2nd Edition, 939–952, Academic Press, 2018.

14. Haacke, E. M., L. S. Petropoulos, E. W. Nilges, and D. H. Wu, "Extraction of conductivity and permittivity using magnetic resonance imaging," Phys. Med. Biol., Vol. 36, 723-34, 1991.
doi:10.1088/0031-9155/36/6/002

15. Katscher, U. and C. A. Berg, "Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications," NMR in Biomedicine, 2017.

16. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1998.
doi:10.1007/978-3-662-03537-5

17. Bertero, M. and P. Boccacci, "Introduction to inverse problems in imaging," Institute of Physics, Bristol, UK, 1998.

18. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

19. Bai, F., A. Franchois, and A. Pizurica, "3D microwave tomography with huber regularization applied to realistic numerical breast phantoms," Progress In Electromagnetics Research, Vol. 155, 75-91, 2016.
doi:10.2528/PIER15121703

20. Baran, A., D. J. Kurrant, A. Zakaria, E. C. Fear, and J. LoVetri, "Breast imaging using microwave tomography with radar-based tissue-regions estimation," Progress In Electromagnetics Research, Vol. 149, 161-171, 2014.
doi:10.2528/PIER14080606

21. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. on Geosci. and Remote Sens., Vol. 39, No. 7, 1596-1607, Jul. 2001.
doi:10.1109/36.934091

22. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013

23. Golnabi, A., et al. "3D microwave tomography of the breast using prior anatomical information," Med. Phys., Vol. 43, No. 4, 1933-1944, 2016.
doi:10.1118/1.4944592

24. Meaney, P., et al. "Integration of microwave tomography with magnetic resonance for improved breast imaging," Med. Phys., Vol. 40, No. 10, 2013.
doi:10.1118/1.4820361

25. Neira, L. M., et al. "High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 6002-6014, 2017.
doi:10.1109/TAP.2017.2751668

26. Rahimov, A., A. Litman, and G. Ferrand, "MRI-based electric properties tomography with a quasi-Newton approach," Inverse Problems, Vol. 33, No. 10, 2017.
doi:10.1088/1361-6420/aa7ef2

27. Rijnen, Z., P. Togni, R. Roskam, S. G. Van De Geer, R. H. Goossens, and M. M. Paulides, "Quality and comfort in head and neck hyperthermia: A redesign according to clinical experience and simulation studies," Int. J. Hyperthermia, Vol. 31, No. 8, 823-830, 2017.
doi:10.3109/02656736.2015.1076893

28. Paulides, M. M., R. M. C. Mestrom, G. Salim, B. B. Adela, W. C. M. Numan, T. Drizdal, D. T. B. Yeo, and A. B. Smolders, "A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators," Phys. Med. Biol., Vol. 62, No. 5, 1831-1847, 2017.
doi:10.1088/1361-6560/aa56b3

29. Gellermann, J., W. Wlodarczyk, A. Feussner, H. F¨ahling, J. Nadobny, B. Hildebrandt, R. Felix, and P. Wust, "Methods end potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system," Int. J. Hyperthermia, Vol. 21, No. 6, 497-513, 2005.
doi:10.1080/02656730500070102

30. Iero, D. A., L. Crocco, and T. Isernia, "Thermal and microwave constrained focusing for patient-specific breast cancer hyperthermia: A robustness assessment," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 814-821, 2014.
doi:10.1109/TAP.2013.2293336

31. Li, M., O. Semerci, and A. Abubakar, "A contrast source inversion method in the wavelet domain," Inverse Problems, Vol. 29, No. 2, 1-19, 2013.
doi:10.1088/0266-5611/29/2/025015

32. Bevacqua, M., L. Crocco, and T. Isernia, "Non-linear inverse scattering via sparsity regularized contrast source inversion," IEEE Transactions on Computational Imaging, Vol. 3, No. 2, 296-304, Jun. 2017.
doi:10.1109/TCI.2017.2675708

33. Palmeri, R., M. T. Bevacqua, L. Crocco, T. Isernia, and L. Di Donato, "Microwave Imaging via Distorted Iterated Virtual Experiments," IEEE Trans. on Antennas and Propag., Vol. 65, No. 2, 829-838, 2017.
doi:10.1109/TAP.2016.2633070

34. Scapaticci, R., I. Catapano, and L. Crocco, "Wavelet-based adaptive multiresolution inversion for quantitative microwave imaging of breast tissues," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3717-3726, 2012.
doi:10.1109/TAP.2012.2201083

35. Roger, A., "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Trans. Antennas Propag., Vol. 29, No. 2, 232-238, Mar. 1981.
doi:10.1109/TAP.1981.1142588

36. Bucci, O. M., I. Catapano, L. Crocco, and T. Isernia, "Synthesis of new variable dielectric profile antennas via inverse scattering techniques: A feasibility study," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1287-1297, Apr. 2005.
doi:10.1109/TAP.2005.844426

37. Datta, N. R., S. Rogers, S. G. Ordonez, E. Puric, and S. Bodis, "Hyperthermia and radiotherapy in the management of head and neck cancers: A systematic review and meta-analysis," Int. J. Hyperthermia, Vol. 32, No. 1, 31-40, 2016.
doi:10.3109/02656736.2015.1099746

38. Zubal, I., C. Harrell, E. Smith, Z. Rattner, G. Gindi, and P. Hoffer, "Computerized three-dimensional segmented human anatomy," Med. Phys., Vol. 21, No. 2, 299-302, 1994.
doi:10.1118/1.597290

39. Hasgall, P. A., F. D. Gennaro, C. Baumgartner, E. Neufeld, M. Gosselin, D. Payne, A. Klingenbock, and N. Kuster, "IT’IS Database for thermal and electromagnetic parameters of biological tissues,", Version 3.0, 2015.

40. Andreuccetti, D., R. Fossi, and C. Petrucci, "An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz, IFAC-CNR, Florence (Italy) - Based on data published by C. Gabriel et al. in 1996,", Website at http://niremf.ifac.cnr.it/tissprop/, 1997.

41. Tournier, P. H., M. Bonazzoli, V. Dolean, F. Rapetti, F. Hecht, F. Nataf, I. Aliferis, I. El Kanfoud, C. Migliaccio, M. de Buhan, et al. "Numerical modeling and high-speed parallel computing: New perspectives on tomographic microwave imaging for brain stroke detection and monitoring," IEEE Ant. Prop. Magazine, Vol. 59, No. 5, 98-110, Oct. 2017.
doi:10.1109/MAP.2017.2731199

42. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable nformation and measurement strategies," Radio Sci., Vol. 32, 2123-2138, 1997.
doi:10.1029/97RS01826

43. Wust, P., B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, "Hyperthermia in combined treatment of cancer," The Lancet Oncology, Vol. 3, No. 8, 487-497, 2002.
doi:10.1016/S1470-2045(02)00818-5

44. Cappiello, G., B. Mc Ginley, M. A. Elahi, T. Drizdal, M. M. Paulides, M. Glavin, M. O’Halloran, and E. Jones, "Differential evolution optimization of the sar distribution for head and neck hyperthermia," IEEE Trans. Bio. Eng., Vol. 64, 1875-1885, Aug. 2017.
doi:10.1109/TBME.2016.2627941

45. Canters, R. A. M., P. Wust, J. F. Bakker, and G. C. Van Rhoon, "A literature survey on indicators for characterization and optimization of SAR distributions in deep hyperthermia, a plea for standardization," Int. J. Hyperthermia, Vol. 25, 593-608, Nov. 2009.

46. Catapano, I., L. Crocco, and T. Isernia, "A simple two-dimensional inversion technique for imaging homogeneous targets in stratified media," Radio Sci., Vol. 39, 2004.