Vol. 78
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-09-23
HTS Multi-Mode Ring Resonator UWB Filter with Cross-Shaped Stepped-Impedance Stubs
By
Progress In Electromagnetics Research Letters, Vol. 78, 129-134, 2018
Abstract
This paper presents an ultra-wideband (UWB) high temperature superconducting (HTS) bandpass filter (BPF) based on a ring resonator loaded with a pair of symmetrical cross-shaped stepped-impedance open stubs. The main advantages are that two transmission zeros are introduced to improve passband selectivity, and high mode suppression is achieved by adjusting the impedance ratio of the cross-shaped stubs and using a pair of parallel-coupled lines. The filter is designed on double-sided YBCO/MgO/YBCO HTS films with a thickness of 0.5 mm and dielectric constant of 9.8. At 77 K, the measured 3-dB bandwidth of the filter covers 1.63 GHz~6.03 GHz. Due to the use of superconducting material, the insertion loss at the center frequency of 3.83 GHz is 0.12 dB, and the rejection is greater than 36 dB in the lower stopband, and the upper stopband with 20 dB attenuation level is extended to at least 8.5 GHz.
Citation
Zhihe Long, Mingen Tian, Liguo Zhou, Shuangshuang Cao, Man Qiao, and Tianliang Zhang, "HTS Multi-Mode Ring Resonator UWB Filter with Cross-Shaped Stepped-Impedance Stubs," Progress In Electromagnetics Research Letters, Vol. 78, 129-134, 2018.
doi:10.2528/PIERL18070601
References

1. Shang, Z. J., X. B. Guo, B. S. Cao, B. Wei, X. P. Zhang, Y. Heng, G. N. Suo, and X. K. Song, "Design of a superconducting ultra-wideband (UWB) bandpass filter with sharp rejection skirts and miniaturized size," IEEE Microwave Wireless Components Letters, Vol. 23, No. 2, 72-74, 2013.
doi:10.1109/LMWC.2013.2239633

2. Wu, X. H., Q. X. Chu, X. K. Tian, and X. O. Yang, "Quintuple-mode UWB bandpass filter with sharp roll-off and super-wide upper stopband," IEEE Microwave Wireless Components Letters, Vol. 21, No. 12, 661-663, 2011.
doi:10.1109/LMWC.2011.2170672

3. Lan, S. W., M. H. Weng, C. Y. Hung, and S. J. Chang, "Design of a compact ultra-wideband bandpass filter with an extremely broad stopband region," IEEE Microwave Wireless Components Letters, Vol. 26, No. 6, 392-394, 2016.
doi:10.1109/LMWC.2016.2558039

4. Zhu, H. and Q. X. Chu, "Ultra-wideband bandpass filter with a notch-band using stub-loaded ring resonator," IEEE Microwave Wireless Components Letters, Vol. 23, No. 7, 341-343, 2013.
doi:10.1109/LMWC.2013.2262928

5. Kim, C. H. and K. Chang, "Ultra-wideband (UWB) ring resonator bandpass filter with a notched band," IEEE Microwave Wireless Components Letters, Vol. 21, No. 4, 206-208, 2011.
doi:10.1109/LMWC.2011.2109942

6. Moradi, B., U. Martinez-Iranzo, and J. Garcia-Garcia, "Multimode ultra-wideband filters by using a grounded open ring resonator," Microwave and Optical Technology Letters, Vol. 58, No. 8, 2001-2004, 2016.
doi:10.1002/mop.29959

7. Kim, C. H. and K. Chang, "Ring resonator bandpass filter with switchable bandwidth using stepped-impedance stubs," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 12, 3936-3944, 2010.

8. Lu, X. L., B. Wei, Z. Xu, B. S. Cao, X. B. Guo, X. P. Zhang, R. X. Wang, and F. Song, "Superconducting ultra-wideband (UWB) bandpass filter design based on quintuple/quadruple/triple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 4, 1281-1293, 2015.
doi:10.1109/TMTT.2015.2402152

9. Zhou, C. X., P. P. Guo, K. Zhou, and W. Wu, "Design of a compact uwb filter with high selectivity and superwide stopband," IEEE Microwave Wireless Components Letters, Vol. 27, No. 7, 636-638, 2017.
doi:10.1109/LMWC.2017.2711509

10. Honari, M. M., R. Mirzavand, H. Saghlatoon, and P. Mousavi, "Two-layered substrate integrated waveguide filter for UWB applications," IEEE Microwave Wireless Components Letters, Vol. 27, No. 7, 633-635, 2017.
doi:10.1109/LMWC.2017.2711510