Vol. 78
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-08-31
A 28-GHz Antenna for 5G MIMO Applications
By
Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018
Abstract
In this letter a four-port multi-input-multi-output (MIMO) antenna for 5G applications is proposed. This antenna is compact with a size of 11.3 mm×31 mm excluding feed lines. The radiation patterns of the antenna show pattern diversity in the azimuthal plane, and each antenna element has an end-fire gain about 10 dBi by employing an array of metamaterial unit cells. The isolation between the antenna elements with edge to edge separation <λ0/5.5 at 28 GHz is enhanced by trimming the corners of the rectangular high refractive index metamaterial region along with a ground stub between antennas. The proposed antenna is fabricated, and each antenna element has return loss, Snn<-10 dB with isolation, Snm>21 dB in the frequency range 26 GHz to 31 GHz, which makes this antenna potential candidate for MIMO application at 28 GHz band enabling 5G cellular communications.
Citation
Zamir Wani, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul, "A 28-GHz Antenna for 5G MIMO Applications," Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018.
doi:10.2528/PIERL18070303
References

1. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proc. IEEE, Vol. 99, No. 8, 1390-1436, Aug. 2011.
doi:10.1109/JPROC.2011.2143650

2. Yang, B., Z. Yu, Y. Dong, J. Zhou, and W. Hong, "Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems ," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6721-6727, Dec. 2017.
doi:10.1109/TAP.2017.2700891

3. Sharawi, M. S., S. K. Podilchak, M. T. Hussain, and Y. M. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices," Antennas Propag. IET Microw., Vol. 11, No. 2, 287-293, 2017.
doi:10.1049/iet-map.2016.0457

4. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Trans. Antennas Propag., Vol. PP, No. 99, 1-1, 2017.

5. Hsu, Y. W., T. C. Huang, H. S. Lin, and Y. C. Lin, "Dual-polarized quasi Yagi-Uda antennas with endfire radiation for millimeter-wave MIMO terminals," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6282-6289, Dec. 2017.
doi:10.1109/TAP.2017.2734238

6. Sharma, A., A. Sarkar, M. Adhikary, A. Biswas, and M. J. Akhtar, "SIWfed MIMO DRA for future 5G applications," 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 1763-1764, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072924

7. Ikram, M., M. S. Sharawi, A. Shamim, and A. Sebak, "A multiband dual-standard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones," Microw. Opt. Technol. Lett., Vol. 60, No. 6, 1468-1476, Jun. 2018.
doi:10.1002/mop.31180

8. Parchin, N. O., M. Shen, and G. F. Pedersen, "End-fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications," 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, 2016.

9. Selvaraju, R., M. H. Jamaluddin, M. R. Kamarudin, J. Nasir, and M. H. Dahri, "Complementary split ring resonator for isolation enhancement in 5G communication antenna array," Progress In Electromagnetics Research C, Vol. 83, 217-228, 2018.
doi:10.2528/PIERC18011019

10. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017.
doi:10.1109/LAWP.2017.2761903

11. Gupta, S., Z. Briqech, A. R. Sebak, and T. A. Denidni, "Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2763-2766, 2017.
doi:10.1109/LAWP.2017.2745050

12. Hussain, M. T., M. S. Sharawi, S. Podilchack, and Y. M. M. Antar, "Closely packed millimeter-wave MIMO antenna arrays with dielectric resonator elements," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

13. Al-Hasan, M. J., T. A. Denidni, and A. R. Sebak, "Millimeter-wave compact EBG structure for mutual coupling reduction applications," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 823-828, Feb. 2015.
doi:10.1109/TAP.2014.2381229

14. Bait-Suwailam, M. M., M. S. Boybay, O. M. Ramahi, and , "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2902, Sep. 2010.
doi:10.1109/TAP.2010.2052560

15. Sharawi, M. S., A. B. Numan, and D. N. Aloi, "Isolation improvement in a dual-band dual-element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2013.
doi:10.2528/PIER12090610

16. Alhalabi, R. A. and G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3672-3676, Nov. 2009.
doi:10.1109/TAP.2009.2026666

17. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on kramers kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, Oct. 2010.
doi:10.1109/TMTT.2010.2065310

18. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Gain enhancement of millimeter wave antenna with metamaterial loading," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, 2017.

19. Wani, Z. and D. K. Vishwakarma, "An ultrawideband antenna for portable MIMO terminals," Microw. Opt. Technol. Lett., Vol. 58, No. 1, 51-57, Jan. 2016.
doi:10.1002/mop.29498

20. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]," IEEE Antennas Propag. Mag., Vol. 59, No. 2, 162-170, Apr. 2017.
doi:10.1109/MAP.2017.2658346