Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-04
Design of Dodecagon Unit Cell Shape Based Three Layered Frequency Selective Surfaces for X Band Reflection
By
Progress In Electromagnetics Research M, Vol. 75, 103-111, 2018
Abstract
A three layered low profile dodecagon shaped band stop frequency selective surface (FSS) is presented in this paper for X band rejection applications. The three layers are placed in a manner which is complement to each other. The low profile three layered FSS with unit cell dimensions on the order of 0.2λ0x0.2λ0 (at lower center frequency of 8.2 GHz) with overall thickness of three layers including air gap of 5.2 mm is presented. For experimental verification, a three layered FSS has been fabricated and measured. Simulation results show that the designed three layered FSS can provide a stopband from 8 GHz to 12.5 GHz with two transmission zeros of 8.2 GHz and 10.2 GHz with a fractional bandwidth of 45%. The complete design and equivalent circuit model (ECM) of the three layered FSS are presented in this paper.
Citation
Vahida Shaik, and Krishnan Shambavi, "Design of Dodecagon Unit Cell Shape Based Three Layered Frequency Selective Surfaces for X Band Reflection," Progress In Electromagnetics Research M, Vol. 75, 103-111, 2018.
doi:10.2528/PIERM18070207
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.

2. Vardaxoglou, J. C., Analysis and Design, Taunton, UK, 1997.

3. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "3D frequency selective surfaces," Progress In Electromagnetics Research C, Vol. 29, 191-203, 2012.
doi:10.2528/PIERC12033006

4. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "FSS properties of a uniplanar EBG and its application in directivity enhancement of a microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1606-1609, 2016.
doi:10.1109/LAWP.2016.2518299

5. Smith, T., U. Gothelf, O. S. Kim, and O. Breinbjerg, "An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L-and Ka-band satellite communication antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 661-668, 2014.
doi:10.1109/TAP.2013.2292692

6. Akbari, M., H. A. Ghalyon, M. Farahani, A. R. Sebak, and T. A. Denidni, "Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems," IEEE Access, Vol. 5, 6527-6537, 2017.
doi:10.1109/ACCESS.2017.2693342

7. Mias, C., "Frequency selective surfaces loaded with surface-mount reactive components," Electronics Letters, Vol. 39, No. 9, 724-726, 2003.
doi:10.1049/el:20030446

8. Batchelor, J. C., E. A. Parker, J. A. Miller, V. Sanchez-Romaguera, and S. G. Yeates, "Inkjet printing of frequency selective surfaces," Electronics Letters, Vol. 45, No. 1, 7-8, 2009.
doi:10.1049/el:20092713

9. Whittow, W. G., Y. Li, R. Torah, K. Yang, S. Beeby, and J. Tudor, "Printed frequency selective surfaces on textiles," Electronics Letters, Vol. 50, No. 13, 916-917, 2014.
doi:10.1049/el.2014.0955

10. Whittow, W. G., Y. Li, R. Torah, K. Yang, S. Beeby, and J. Tudor, "Printed frequency selective surfaces on textiles," Electronics Letters, Vol. 50, No. 13, 916-917, 2014.
doi:10.1049/el.2014.0955

11. Chaharmir, M. R., J. Shaker, and H. Legay, "Dual-band Ka/X reflectarray with broadband loop elements," IET Microwaves, Antennas & Propagation, Vol. 4, No. 2, 225-231, 2010.
doi:10.1049/iet-map.2008.0369

12. Ferreira, D., I. Cui˜nas, R. F. Caldeirinha, and T. R. Fernandes, "Dual-band single-layer quarter ring frequency selective surface for Wi-Fi applications," IET Microwaves, Antennas & Propagation, Vol. 10, No. 1, 435-441, 2016.
doi:10.1049/iet-map.2015.0641

13. Sivasamy, R., L. Murugasamy, M. Kanagasabai, E. F. Sundarsingh, and M. G. N. Alsath, "A low-profile paper substrate-based dual-band FSS for GSM shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 611-614, 2016.
doi:10.1109/TEMC.2015.2498398

14. Werner, D. H. and D. Lee, "A design approach for dual-polarized multiband frequency selective surfaces using fractal elements," IEEE Antennas and Propagation Society International Symposium, 2000, Vol. 3, 1692-1695, IEEE, Jul. 2000.

15. Li, D., Y. J. Xie, P. Wang, and R. Yang, "Applications of split-ring resonances on multi-band frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1551-1563, 2007.
doi:10.1163/156939307782000271

16. Rashid, A. K. and Z. Shen, "A novel band-reject frequency selective surface with pseudo-elliptic response ," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 1220-1226, 2010.
doi:10.1109/TAP.2010.2041167

17. Azemi, S. N., K. Ghorbani, and W. S. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 781-784, 2013.
doi:10.1109/LAWP.2013.2270950

18. Majidzadeh, M., C. Ghobadi, and J. Nourinia, "Novel single layer reconfigurable frequency selective surface with UWB and multi-band modes of operation," AEU — International Journal of Electronics and Communications, Vol. 70, No. 2, 151-161, 2016.
doi:10.1016/j.aeue.2015.10.011

19. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1662-1664, 2003.
doi:10.1109/TAP.2003.813611

20. Chatterjee, A. and S. K. Parui, "A dual layer frequency selective surface reflector for wideband applications," Radioengineering, Vol. 25, No. 1, 67-72, 2016.
doi:10.13164/re.2016.0067

21. Al-Joumayly, M. A. and N. Behdad, "A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4033-4041, 2010.
doi:10.1109/TAP.2010.2078474

22. Martinez-Lopez, L., J. Rodriguez-Cuevas, J. I. Martinez-Lopez, and A. E. Martynyuk, "A multilayer circular polarizer based on bisected split-ring frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 153-156, 2014.
doi:10.1109/LAWP.2014.2298393

23. Li, Y., L. Li, Y. Zhang, and C. Zhao, "Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using Minkowski fractal structures," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 133-141, 2015.
doi:10.1109/TAP.2014.2367523

24. Chaharmir, M. R. and J. Shaker, "Design of a multilayer X-/Ka-band frequency-selective surface-backed reflectarray for satellite applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 1255-1262, 2015.
doi:10.1109/TAP.2015.2389838

25. Tao, K., B. Li, Y. Tang, and Q.Wu, "Multi-layer tri-band frequency selective surface using stepped-and uniform-impedance resonators," Electronics Letters, Vol. 52, No. 8, 583-585, 2016.
doi:10.1049/el.2016.0324

26. Omar, A. A. and Z. Shen, "Thin bandstop frequency-selective structures based on loop resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 7, 2298-2309, 2017.
doi:10.1109/TMTT.2017.2651812

27. Fallah, M. and M. Hashem Vadjed-Samiei, "Designing a bandpass frequency selective surface based on an analytical approach using hexagonal patch-strip unit cell," Electromagnetics, Vol. 35, No. 1, 25-39, 2015.
doi:10.1080/02726343.2015.971662

28. Marcuvitz, N., Waveguide Handbook, No. 21, IET, 1951.