Vol. 74
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-08
Design of Wideband Planar Linear-Circular Polarization Converter with Centrosymmetric Dual-Loop Elements
By
Progress In Electromagnetics Research M, Vol. 74, 83-92, 2018
Abstract
A wideband planar linear-circular polarization converter comprised of periodic centrosymmetric dual-loop unit cells with wideband property is presented in this letter. Full wave simulation and parameter study are carried out to demonstrate the basic working principle of the converter. Also, the performances of the device under oblique and deflected incidence situations are considered and discussed. A prototype is manufactured and tested. The measured results show that its working band covers from 19.3 GHz to 31.8 GHz with less than 3 dB axial ratio, which agree well with the simulated ones and thus validate the design concept.
Citation
Peng Fei, Wei Hu, Weihua Guo, and Xin Wen, "Design of Wideband Planar Linear-Circular Polarization Converter with Centrosymmetric Dual-Loop Elements," Progress In Electromagnetics Research M, Vol. 74, 83-92, 2018.
doi:10.2528/PIERM18062207
References

1. Zhao, J. and Y. Cheng, "A high-efficiency and broadband re ective 90◦ linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6

2. Zhao, J., Y. Cheng, and Z. Cheng, "Design of a photo-excited switchable broadband re ective linear polarization conversion metasurface for terahertz waves," IEEE Photonics Journal, Vol. 10, No. 1, 1-10, 2018.

3. Fang, C., Y. Cheng, Z. He, J. Zhao, and R. Gong, "Design of a wideband re ective linear polarization converter based on the ladder-shaped structure metasurface," Optik, Vol. 137, 148-155, 2017.
doi:10.1016/j.ijleo.2017.03.002

4. Cheng, Y. Z., C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, "Design of an ultrabroadband and high- efficiency re ective linear polarization convertor at optical frequency," IEEE Photonics Journal, Vol. 8, No. 6, 1-9, 2016.
doi:10.1109/JPHOT.2016.2624559

5. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency re ective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik, Vol. 136, 52-57, 2017.
doi:10.1016/j.ijleo.2017.02.006

6. Cheng, Y., R. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.
doi:10.1007/s11468-016-0365-4

7. Fartookzadeh, M., "Design of metamirrors for linear to circular polarization conversion with super- octave bandwidth," Journal of Modern Optics, Vol. 64, No. 18, 1854-1861, 2017.
doi:10.1080/09500340.2017.1322155

8. Fartookzadeh, M., "Multi-band metamirrors for linear to circular polarization conversion with wideband and wide-angle performances," Applied Physics B, Vol. 123, No. 4, 115, 2017.
doi:10.1007/s00340-017-6696-9

9. Chu, R. and K. Lee, "Analytical model of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence," IEEE Transactions on Antennas and Propagation, Vol. 35, 652-661, 1987.

10. Young, L., L. A. Robinson, and C. Hacking, "Meander-line polarizer," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 3, 376-378, 1973.
doi:10.1109/TAP.1973.1140503

11. Zhao, R., H.-Y. Chen, L. Zhang, F. Li, P. Zhou, J. Xie, and L.-J. Deng, "Design and implementation of high efficiency and broadband transmission-type polarization converter based on diagonal split- ring resonator," Progress In Electromagnetics Research, Vol. 161, 1-10, 2018.
doi:10.2528/PIER17110604

12. Lin, B., J. Wu, X. Da, W. Li, and J. Ma, "A linear-to-circular polarization converter based on a second-order band-pass frequency selective surface," Applied Physics A, Vol. 123, No. 1, 43, 2017.
doi:10.1007/s00339-016-0673-8

13. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501

14. Lin, B., J. Guo, B. Huang, L. Fang, P. Chu, and X. Liu, "Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface," Chinese Physics B, Vol. 27, No. 5, 054204, 2018.
doi:10.1088/1674-1056/27/5/054204

15. Zhang, W., J. Li, and J. Xie, "A broadband circular polarizer based on cross-shaped composite frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5623-5627, 2017.
doi:10.1109/TAP.2017.2735459

16. Ericsson, A. and D. Sjoberg, "Design and analysis of a multilayer meander line circular polarization selective structure," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4089-4101, 2017.
doi:10.1109/TAP.2017.2710207

17. Li, Y., J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, "Achieving wide- band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces," Journal of Applied Physics, Vol. 117, No. 4, 044501, 2015.
doi:10.1063/1.4906220

18. Tamayama, Y., K. Yasui, T. Nakanishi, and M. Kitano, "A linear-to-circular polarization converter with half transmission and half re ection using a single-layered metamaterial," Applied Physics Letters, Vol. 105, No. 2, 021110, 2014.
doi:10.1063/1.4890623

19. Akbari, M., M. Farahani, A. Sebak, and T. A. Denidni, "Ka-band linear to circular polarization converter based on multilayer slab with broadband performance," IEEE Access, Vol. 5, 17927-17937, 2017.
doi:10.1109/ACCESS.2017.2746800

20. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors," IET Microwaves, Antennas & Propagation, Vol. 4, No. 11, 1764-1772, 2010.
doi:10.1049/iet-map.2009.0415

21. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2457-2459, 2010.
doi:10.1109/TAP.2010.2048874

22. Euler, M., V. Fusco, R. Dickie, R. Cahill, and J. Verheggen, "Sub-mm wet etched linear to circular polarization FSS based polarization converters," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 3103-3106, 2011.
doi:10.1109/TAP.2011.2158973

23. Wang, J., W. Wu, and Z. Shen, "Improved polarization converter using symmetrical semi-ring slots," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2052-2053, 2014.
doi:10.1109/APS.2014.6905353

24. Altintas, O., E. Unal, O. Akgol, M. Karaaslan, F. Karadag, and C. Sabah, "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, Vol. 31, No. 30, 1750274, 2017.
doi:10.1142/S0217984917502748

25. Akgol, O., E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, "Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal," Optik, Vol. 161, 12-19, 2018.
doi:10.1016/j.ijleo.2018.02.028

26. Akgol, O., O. Altintas, E. Unal, M. Karaaslan, and F. Karadag, "Linear to left-and right- hand circular polarization conversion by using a metasurface structure," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 1, 133-138, 2018.
doi:10.1017/S1759078717001192

27. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microwave and Optical Technology Letters, Vol. 54, No. 7, 1770-1774, 2012.
doi:10.1002/mop.26884

28. Zhu, H., K. L. Chung, X. Sun, S. W. Cheung, and T. I. Yuk, "CP metasurfaced antennas excited by LP sources," IEEE Antennas and Propagation Society International Symposium, 1-2, 2012.

29. Huang, Y., L. Yang, J. Li, Y. Wang, and G. Wen, "Polarization conversion of metasurface for the application of wide band low-pro le circular polarization slot antenna," Applied Physics Letters, Vol. 109, No. 5, 054101, 2016.
doi:10.1063/1.4960198

30. Fei, P., Z. Shen, X. Wen, and F. Nian, "A single-layer circular polarizer based on hybrid meander line and loop con guration," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4609-4614, 2015.
doi:10.1109/TAP.2015.2462128

31. Fei, P., X. Wen, P. Zhang, and W. Guo, "A wideband single-layered circular polarizer with centrosymmetric dual-loop elements," 2016 46th European Microwave Conference (EuMC), 1271-1274, 2016.
doi:10.1109/EuMC.2016.7824582