Vol. 70
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-20
Investigating the Impacts of Meteorological Parameters on Electromagnetic Environment of Overhead Transmission Line
By
Progress In Electromagnetics Research M, Vol. 70, 177-185, 2018
Abstract
The meteorological parameters along the overhead line change significantly, which have an effect on the surrounding electromagnetic environment. The analysis method of meteorological parameters impacting the electromagnetic environment is presented in this paper. Firstly, the conductor temperature is solved iteratively by the heat balance equation. Secondly, the power flow model involving the conductor temperature is established based on the relationship between line parameters and conductor temperature. Finally, the electromagnetic environment surrounding the line is analyzed based on the changes of line voltage and current. In the case study, the electromagnetic environment of the IEEE 5-bus system under the three cases is analyzed and compared. It is proved that the changes of meteorological parameters along the line have an important impact on the surrounding electromagnetic environment. The calculation of electromagnetic environment considering the changes of meteorological parameters is more accurate.
Citation
Yang Mo, Yanling Wang, Fan Song, Zheng Xu, Qiang Zhang, and Zhiqiang Niu, "Investigating the Impacts of Meteorological Parameters on Electromagnetic Environment of Overhead Transmission Line," Progress In Electromagnetics Research M, Vol. 70, 177-185, 2018.
doi:10.2528/PIERM18061403
References

1. He, J. L., S. M. Chen, J. Guo, R. Zeng, and J. Lee, "Electromagnetic environment analysis of a software park near transmission lines," IEEE Transactions on Industry Applications, Vol. 40, No. 4, 995-1002, 2004.
doi:10.1109/TIA.2004.830772

2. Okrainskaya, I. S., A. I. Sidorov, and S. P. Gladyshev, "Electromagnetic environment under over head power transmission lines 110-500 kV," International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, 796-801, 2012.
doi:10.1109/SPEEDAM.2012.6264574

3. Zhao, L. X., J. Y. Lu, and G. F. Wu, "Measurement and analysis on electromagnetic environment of 1000 kV UHV AC transmission line," IEEE Transactions on Industry Applications, 1-4, 2012.

4. Sibanda, M., R. R. Van, and N. Parus, "Overview of the electromagnetic environment in the vicinity of HVDC transmission lines," Proceedings of the 10th Industrial and Commercial Use of Energy Conference, 1-7, 2013.

5. Wang, Y. L., Z. J. Yan, L. K. Liang, X. S. Han, and X. F. Zhou, "Dynamic rating analysis of overhead line loadability driven by meteorological data," Power System Technology, Vol. 42, No. 1, 315-321, 2018.

6. Zhang, H., X. S. Han, and Y. L. Wang, "Analysis on current carrying capacity of overhead lines being operated," Power System Technology, Vol. 32, No. 14, 31-35, 2008.

7. Douglass, D. A., "Weather-dependent versus static thermal line ratings," IEEE Transactions on Power Delivery, Vol. 3, No. 2, 742-753, 1998.
doi:10.1109/61.4313

8. Heckenbergerova, J., P. Musilek, and K. Filimonenkov, "Assessment of seasonal static thermal ratings of overhead transmission conductors," IEEE Power and Energy Society General Meeting, Vol. 1, No. 8, 2011.

9. Kim, S. D. and M. M. Morcos, "An application of dynamic thermal line rating control system to up-rate the ampacity of overhead transmission lines," IEEE Transactions on Power Delivery, Vol. 28, No. 2, 1231-1232, 2013.
doi:10.1109/TPWRD.2012.2234940

10. Mo, Y., X. F. Zhou, Y. L. Wang, and L. K. Liang, "Study on operating status of overhead transmission lines based on wind speed variation," Progress In Electromagnetics Research M, Vol. 60, 111-120, 2017.
doi:10.2528/PIERM17072605

11. Wang, Y. L., Y. Mo, M. Q. Wang, X. F. Zhou, L. K. Liang, and P. Zhang, "Impact of conductor temperature time-space variation on the power system operational state," Energies, Vol. 11, No. 4, 1-15, 2018.

12. Wang, Y. F., H.Wang, H. Xue, C. Yang, and T. Yan, "Research on the electromagnetic environment of 110 kV six-circuit transmission line on the same tower," IEEE PES Innovative Smart Grid Technologies, 1-5, 2012.

13. CIGRE "Thermal behavior of overhead conductors,", CIGRE WG12, ELECTRA(144), 1992.

14. Grainger, J. J. and W. D. Stevenson, Power System Analysis, McGraw-Hill College, 1994.

15. Rakpenthai, C. and S. Uatrongjit, "Power system state and transmission line conductor temperature estimation," IEEE Transactions Power Systems, Vol. 32, No. 3, 1818-1827, 2017.
doi:10.1109/TPWRS.2016.2601072

16. Huang, D. C., J. J. Ruan, and F. Huo, "Study on the electromagnetic environment of 1000 kV AC double-circuit transmission lines in China," IEEE/PES Power Systems Conference and Exposition, 1-7, 2009.

17. Huang, W. G., "Study on conductor configuration of 500 kV Chang-Fang compact line," IEEE Transactions on Power Delivery, Vol. 18, No. 3, 1002-1008, 2003.
doi:10.1109/TPWRD.2003.813828