Vol. 163
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-08-26
SVR-CMT Algorithm for Null Broadening and Sidelobe Control
By
Progress In Electromagnetics Research, Vol. 163, 39-50, 2018
Abstract
Minimum variance distortionless response (MVDR) beamformer is an adaptive beamforming technique that provides a method for separating the desired signal from interfering signals. Unfortunately, the MVDR beamformer may have unacceptably low nulling level and high sidelobes, which may lead to significant performance degradation in the case of unexpected interfering signals such as the rapidly moving jammer environments. Via support vector machine regression (SVR), a novel beamforming algorithm (named as SVR-CMT algorithm) is presented for controlling the sidelobes and the nullling level. In the proposed method, firstly, the covariance matrix is tapered based on Mailloux covariance matrix taper (CMT) procedure to broaden the width of nulls for interference signals. Secondly, the equality constraints are modified into inequality constraints to control the sidelobe level. By the ε-insensitive loss function for the sidelobe controller, the modified beamforming optimization problem is formulated as a standard SVR problem so that the weight vector can be obtained effectively. Compared with the previous works, the proposed SVR-CMT method provides better beamforming performance. For instance, (1) it can effectively control the sidelobe and nullling level. (2) it can improve the output signal-to-interference-and-noise ratio (SINR) performance even if the direction-of-arrival (DOA) errors exist. Simulation results demonstrate the efficiency of the presented approach.
Citation
Fulai Liu, Yifan Wu, Han Duan, and Ruiyan Du, "SVR-CMT Algorithm for Null Broadening and Sidelobe Control," Progress In Electromagnetics Research, Vol. 163, 39-50, 2018.
doi:10.2528/PIER18061106
References

1. Chen, C. and W. B. Cai, "Low complexity beamforming and user selection schemes for 5G MIMO-NOMA systems," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 12, 2708-2722, 2017.
doi:10.1109/JSAC.2017.2727229

2. Wang, L. and C. Andrea, "Microphone-array ego-noise reduction algorithms for auditory micro aerial vehicles," IEEE Sensors Journal, Vol. 17, No. 8, 2447-2455, 2017.
doi:10.1109/JSEN.2017.2669262

3. Hassanien, A. and G. Moeness, "Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity," IEEE Transactions on Signal Processing, Vol. 64, No. 8, 2168-2181, 2016.
doi:10.1109/TSP.2015.2505667

4. Capon, J., "High resolution frequency-wavenumber spectrum analysis," Processing of IEEE, Vol. 57, No. 58, 1408-1418, 1969.
doi:10.1109/PROC.1969.7278

5. Mailloux, R. J., "Covariance matrix augmentation to produce adaptive array pattern roughs," Electronics Letters, Vol. 31, No. 10, 771-772, 1995.
doi:10.1049/el:19950537

6. Zatman, M., "Production of adaptive array troughs by dispersion synthesis," Electronics Letters, Vol. 31, No. 25, 2141-2142, 1995.
doi:10.1049/el:19951486

7. Guerci, J. R., "Theory and application of covariance matrix tapers for robust adaptive beamforming," IEEE Transactions on Signal Processing, Vol. 47, No. 4, 977-985, 1999.
doi:10.1109/78.752596

8. Liu, F., J. Wang, C. Y. Sun, and R. Du, "Robust MVDR beamformer for nulling level control via multi-parameteric quadratic programming," Progress In Electromagnetics Research C, Vol. 20, 239-254, 2011.
doi:10.2528/PIERC11022507

9. Li, W. X., X. J. Mao, and Y. X. Sun, "A new algorithm for null broadening beamforming," Journal of Electronics and Information Technology, Vol. 36, No. 12, 2882-2888, 2014.

10. Mao, X. J., W. X. Li, and Y. S. Li, "Robust adaptive beamforming against signal steering vector mismatch and jammer motion," International Journal of Antennas and Propagations, Vol. 10, 1-12, 2015.

11. Zhao, Y., W. X. Li, X. J. Mao, and N. Zhang, "Null broadening beamforming against array calibration errors," Journal of Harbin Engineering University, Vol. 39, No. 1, 163-168, 2018.

12. Li, S., "Robust beamforming algorithm based on nulls optimization," Signal Processing, Vol. 33, No. 12, 1542-1547, 2017.

13. Liu, J., A. B. Gershman, and Z. Q. Luo, "Adaptive beamforming with sidelobe control: A second-order cone programming approach ," IEEE Signal Processing Letters, Vol. 10, No. 11, 331-334, 2013.

14. Zaharis, Z. D., C. Skeberis, and T. D. Xenos, "Improved antenna array adaptive beamforming with low side lobe level using a novel adaptive invasive weed optimization method," Progress In Electromagnetics Research, Vol. 124, 137-150, 2012.
doi:10.2528/PIER11120202

15. Huang, J., P. Wang, and Q. Wan, "Sidelobe suppression for blind adaptive beamforming with sparse constraint," IEEE Communications Letters, Vol. 15, No. 3, 343-345, 2011.
doi:10.1109/LCOMM.2011.012511.102215

16. Liu, Y. and Q. Wan, "Sidelobe suppression for robust beamformer via the mixed norm constraint," Wireless Personal Communications, Vol. 65, No. 4, 825-832, 2012.
doi:10.1007/s11277-011-0312-9

17. Vapnik, V. N., Statistical Learning Theory, Wiley, 1998.

18. Salah, Z., M. Tarek, and A. Bechir, "Fault detection in wireless sensor networks through SVM classifier," IEEE Sensors Journal, Vol. 18, No. 1, 340-347, 2018.
doi:10.1109/JSEN.2017.2771226

19. Islam, M., G. Mallikharjunudu, A. S. Parmar, A. Kumar, and R. H. Laskar, "SVM regression based robust image watermarking technique in joint DWT-DCT domain," 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, 1426-1433, 2017.

20. Ramon, M. M., N. Xu, and C. G. Christodoulou, "Beamforming using support vector machines," IEEE Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 439-442, 2005.
doi:10.1109/LAWP.2005.860196

21. Cesar, C. G. and S. Ignacio, "Robust array beamforming with sidelobe control using support vector machines," IEEE Transactions on Signal Processing, Vol. 55, No. 2, 574-584, 2007.
doi:10.1109/TSP.2006.885720

22. Lu, Y., J. An, and X. Bu, "Adaptive bayesian beamforming with sidelobe constraint," IEEE Communications Letters, Vol. 14, No. 5, 369-371, 2010.
doi:10.1109/LCOMM.2010.05.091915

23. Cui, L., Y. Li, and X. Li, "Application of support vector regression in beamforming," International Conference on Computer Science and Network Technology, 1270-1273, 2012.

24. Lin, C., Y. A. Li, Y. Y. Fang, and X. J. Bai, "The robust diagonal loading beamforming method using support vector machines," Acta Armamentarii, Vol. 34, No. 5, 598-604, 2013.

25. Ayestaran, R. G. and F. Las-Heras, "Support vector regression for the design of array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 414-416, 2005.
doi:10.1109/LAWP.2005.859379

26. Ayestaran, R. G. and F. Las-Heras, "Support vector multi-regression and equivalent 2D modelling for 3D antenna array synthesis," European Conference on Antennas and Propagation, 1-5, 2008.

27. Ayestaran, R. G., J. Laviada, and F. Las-Heras, "Realistic antenna array synthesis in complex environments using a MOM-SVR approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 97-108, 2009.
doi:10.1163/156939309787604670

28. Martinez-Ramon, M. and C. Christodoulou, "Support vector machines for antenna array processing and electromagnetics," Synthesis Lectures on Computational Electromagnetics, 1-120, 2006.
doi:10.2200/S00020ED1V01Y200604CEM005

29. Perez-Cruz, F., "An IRWLS procedure for SVR," The 10th European Signal Processing Conference, 1-4, 2000.

30. Perez-Cruz, F., C. Bousono-Calzon, and A. Artes-Rodrıguez, "Convergence of the IRWLS procedure to the support vector machine solution," Neural Computation, Vol. 17, 7-18, 2005.
doi:10.1162/0899766052530875

31. Sun, D. S., "The researches on support vector machine classification and regression methods," Central South University, 49-50, 2004.

32. Nocedal, J. and S. J. Wright, Numerical Optimization, Springer-Verlag, 1999.
doi:10.1007/b98874