1. Gusynin, V., S. Sharapov, and J. Carbotte, "Anomalous absorption line in the magneto-optical response of graphene," Physical Review Letters, Vol. 98, 157402, 2007.
doi:10.1103/PhysRevLett.98.157402
2. Koppens, F. H., D. E. Chang, and F. J. Garcia de Abajo, "Graphene plasmonics: A platform for strong light–matter interactions," Nano Letters, Vol. 11, 3370-3377, 2011.
doi:10.1021/nl201771h
3. Nair, R., P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, "Fine structure constant defines visual transparency of graphene," Science, Vol. 320, 1308-1308, 2008.
doi:10.1126/science.1156965
4. Li, Y., F. Kong, and K. Li, "Graphene-based infrared lens with tunable focal length," Progress In Electromagnetics Research, Vol. 155, 19-26, 2016.
doi:10.2528/PIER15120201
5. Mikhailov, S. and K. Ziegler, "New electromagnetic mode in graphene," Physical Review Letters, Vol. 99, 016803, 2007.
doi:10.1103/PhysRevLett.99.016803
6. Ziegler, K., "Robust transport properties in graphene," Physical Review Letters, Vol. 97, 266802, 2006.
doi:10.1103/PhysRevLett.97.266802
7. Correas-Serrano, D., J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, "Graphenebased plasmonic tunable low-pass filters in the terahertz band," IEEE Transactions on Nanotechnology, Vol. 13, 1145-1153, 2014.
doi:10.1109/TNANO.2014.2344973
8. Abbas, F., A. Lakhtakia, Q. A. Naqvi, and M. Faryad, "An optical-sensing modality that exploits Dyakonov-Tamm waves," Photonics Research, Vol. 3, 5-8, 2015.
doi:10.1364/PRJ.3.000005
9. Wu, Y., M. Qu, Y. Liu, and Z. Ghassemlooy, "A broadband graphene-based THz coupler with wide-range tunable power-dividing ratios," Plasmonics, Vol. 12, 1487-1492, 2017.
doi:10.1007/s11468-016-0409-9
10. Kong, M., Y. Wu, Z. Zhuang, W. Wang, and Y. Liu, "Graphene-based THz tunable bandstop filter with constant absolute bandwidth," Progress In Electromagnetics Research Letters, Vol. 71, 141-147, 2017.
doi:10.2528/PIERC16122201
11. Wu, H.-Q., C.-Y. Linghu, H.-M. Lu, and H. Qian, "Graphene applications in electronic and optoelectronic devices and circuits," Chinese Physics B, Vol. 22, 098106, 2013.
doi:10.1088/1674-1056/22/9/098106
12. Dash, G., S. R. Pattanaik, and S. Behera, "Graphene for electron devices: The panorama of a decade," IEEE Journal of the Electron Devices Society, Vol. 2, No. 5, 77-104, 2014.
doi:10.1109/JEDS.2014.2328032
13. Kusmartsev, F., W.Wu, M. Pierpoint, and K. Yung, "Application of graphene within optoelectronic devices and transistors," Applied Spectroscopy and the Science of Nanomaterials, 191-221, Springer, 2015.
14. Kuila, T., S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, "Recent advances in graphene-based biosensors," Biosensors and Bioelectronics, Vol. 26, 4637-4648, 2011.
doi:10.1016/j.bios.2011.05.039
15. Madani, A., S. Zhong, H. Tajalli, S. Roshan Entezar, A. Namdar, and Y. Ma, "Tunable metamaterials made of graphene-liquid crystal multilayers," Progress In Electromagnetics Research, Vol. 143, 545-558, 2013.
doi:10.2528/PIER13080302
16. Peres, N. and E. V. Castro, "Algebraic solution of a graphene layer in transverse electric and perpendicular magnetic fields," Journal of Physics: Condensed Matter, Vol. 19, 406231, 2007.
doi:10.1088/0953-8984/19/40/406231
17. Kuzmin, D. A., I. V. Bychkov, and V. G. Shavrov, "Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber," Optics Letters, Vol. 40, 890-893, 2015.
doi:10.1364/OL.40.000890
18. Stauber, T., N. Peres, and A. Geim, "Optical conductivity of graphene in the visible region of the spectrum," Physical Review B, Vol. 78, 085432, 2008.
doi:10.1103/PhysRevB.78.085432
19. Wang, G., Z. Gao, G. Wan, S. Lin, P. Yang, and Y. Qin, "Supported high-density magnetic nanoparticles on graphene by atomic layer deposition used as efficient synergistic microwave absorbers,", 2014, DOI: 10.1007/s12274-014-0432-0.
20. Bao, Q., H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, "Broadband graphene polarizer," Nature Photonics, Vol. 5, 411-415, 2011.
doi:10.1038/nphoton.2011.102
21. Nilsson, J., A. C. Neto, F. Guinea, and N. Peres, "Transmission through a biased graphene bilayer barrier," Physical Review B, Vol. 76, 165416, 2007.
doi:10.1103/PhysRevB.76.165416
22. Jiang, L., Y. Xiang, X. Dai, and S. Wen, "Superluminal pulse reflection from graphene covered lossless dielectric slab," IEEE Journal of Quantum Electronics, Vol. 51, No. 3, 7000106, 2015.
doi:10.1109/JQE.2015.2396301
23. Othman, M. A., C. Guclu, and F. Capolino, "Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption," Optics Express, Vol. 21, 7614-7632, 2013.
doi:10.1364/OE.21.007614
24. Arrazola, I., R. Hillenbrand, and A. Y. Nikitin, "Plasmons in graphene on uniaxial substrates," Applied Physics Letters, Vol. 104, 011111, 2014.
doi:10.1063/1.4860576
25. Nikolaenko, A. E., N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, "Nonlinear graphene metamaterial," Applied Physics Letters, Vol. 100, 181109, 2012.
doi:10.1063/1.4711044
26. Lekner, J., "Normal-incidence reflection and transmission by uniaxial crystals and crystal plates," Journal of Physics: Condensed Matter, Vol. 4, 1387, 1992.
doi:10.1088/0953-8984/4/5/019