Vol. 71
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-07
Broadband Class-j /F-1 Continuum Mode Design Utilizing Harmonic Efficiency Selectivity Circuit
By
Progress In Electromagnetics Research M, Vol. 71, 169-178, 2018
Abstract
This paper proposes a harmonic efficiency selectivity circuit (HESC) for achieving a broadband Class-J/F-1 continuum mode power amplifier (PA) with enhanced efficiency. Design equations are derived through continuum mode condition analysis and are used in implementing the HESC. The implemented HESC topology is then used in attaining the broadband Class-J/F-1 continuum mode PA. A theoretical parameter termed harmonic-alpha (ρh) acting as a sub-unit structure in HESC is introduced. Considering harmonic losses, ρh possesses a lookup table containing information on the harmonics. ρh operates in unison with the HESC in selecting the suitable harmonics with the best efficiencies. With ρh, the relationship among the HESC, the optimal impedance at the device's drain, and the terminal load impedance is defined for a greater freedom of harmonic impedance solutions space, efficiency improvement, and bandwidth extension, thus, indicating an increased flexibility in the design of broadband continuum mode PAs. This method is validated with a realized PA prototype operating from 1.3 to 2.4 GHz corresponding to a fractional bandwidth of 59.5%. The experimental results under continuous wave signals indicate that 79% peak efficiency, 42.68 dBm peak output power, and 16.96 dB peak gain are recorded. Moreover, at 1.7 GHz, when being tested with modulated signals at an average output power of 34.83 dBm, the lower and higher adjacent channel power ratios (ACPRs) without digital predistortion (DPD) are -34.9 dBc and -33.9 dBc, respectively, and a drain effifficiency (DE) of 45% is recorded. With DPD, -50.8 dBc and -50.3 dBc are respectively obtained at lower and higher ACPRs at an average output power of 34.6 dBm, and a DE of 44% is achieved.
Citation
Gideon Naah, Songbai He, Weimin Shi, Bin Song, Tian Qi, and Shaddrack Yaw Nusenu, "Broadband Class-j /F-1 Continuum Mode Design Utilizing Harmonic Efficiency Selectivity Circuit," Progress In Electromagnetics Research M, Vol. 71, 169-178, 2018.
doi:10.2528/PIERM18060207
References

1. Cripps, S. C., P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 10, 665-667, Oct. 2009.
doi:10.1109/LMWC.2009.2029754

2. Mimis, K., K. A. Morris, S. Bensmida, and J. P. McGeehan, "Multichannel and wideband power amplifier design methodology for 4G communication systems based on hybrid class-J operation," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2562-2570, Aug. 2012.
doi:10.1109/TMTT.2012.2198489

3. Li, Q., S. He, W. Shi, Z. Dai, and T. Qi, "Extend the class-B to class-J continuum mode by adding arbitrary harmonic voltage elements," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 7, 522-524, Jul. 2016.
doi:10.1109/LMWC.2016.2574824

4. Bukvic, B. and M. M. Ilic, "Simple design of a class-J amplifier with predetermined efficiency," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 9, 699-701, Sep. 2016.
doi:10.1109/LMWC.2016.2597228

5. Amirpour, R., R. Darraji, F. Ghannouchi, and R. Quay, "Enhancement of the broadband efficiency of a class-J power amplifier with varactor-based dynamic load modulation," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 2, 180-182, Feb. 2017.
doi:10.1109/LMWC.2016.2646905

6. Dong, Y., L. Mao, and S. Xie, "Fully integrated class-J power amplifier in standard CMOS technology," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 1, 64-66, Jan. 2017.
doi:10.1109/LMWC.2016.2630920

7. Cripps, S. C., RF Power Amplifiers for Wireless Communications, 2nd Ed., Artech House, Norwood, MA, 2006.

8. Shi, W., S. He, Q. Li, T. Qi, and Q. A. Liu, "Design of broadband power amplifiers based on resistive-reactive series of continuous modes," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 7, 519-521, Jul. 2016.
doi:10.1109/LMWC.2016.2574823

9. Wright, P., J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear broadband PA," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 12, 3196-3204, Dec. 2009.
doi:10.1109/TMTT.2009.2033295

10. Aggrawal, E., K. Rawat, and P. Roblin, "Investigating continuous class-F power amplifier using nonlinear embedding model," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 6, 593-595, Jun. 2017.
doi:10.1109/LMWC.2017.2701316

11. Carrubba, V., et al. "Exploring the design space for broadband PAs using the novel continuous inverse class-F mode," Proc. 41st Eur. Microw. Conf. (EuMC), 333-336, IEEE, Oct. 2011.

12. Carrubba, V., et al. "A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, IEEE, Jun. 2011.