Vol. 82
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-03-13
Beam Scanning Microstrip Leaky Wave Antenna Design Based on Liquid Crystal
By
Progress In Electromagnetics Research Letters, Vol. 82, 95-100, 2019
Abstract
A novel beam scanning microstrip leaky wave antenna based on liquid crystal material is proposed in this paper. Based on the dielectric anisotropy of the liquid crystal, the main beam angle of the antenna pattern can be easily adjusted with the changing of external bias voltages. Good agreement between simulated and measured results is found for the presented leaky wave antenna. Both the simulation and test frequencies of the antenna are set at 12 GHz. Besides, the measured data show that when the dielectric constant of the liquid crystal changes from 2.4 to 2.52, about 10 degrees tuning range of the main beam angle is achieved.
Citation
Chunyang Pan, Ziyuan He, and Yaling Liu, "Beam Scanning Microstrip Leaky Wave Antenna Design Based on Liquid Crystal," Progress In Electromagnetics Research Letters, Vol. 82, 95-100, 2019.
doi:10.2528/PIERL18053101
References

1. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15090103

2. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703

3. Scattone, F., M. Ettorre, B. Eddo, R. Sauleau, and N. J. G. Fonseca, "Truncated leaky-wave antenna with cosecant-squared radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 5, 841-844, 2018.
doi:10.1109/LAWP.2018.2818668

4. Ma, S., F.-L. Zhang, F.-Y. Meng, and Q.Wu, "Electrically controlled leaky wave antenna with wide-angle scanning based on liquid crystal," IEEE International Conference on Electronic Information and Communication Technology, 603-605, 2016.

5. Nose, T., Y. Ito, T. Iisaka, et al. "High-frequency performance extending to millimeter-waves in inverted-microstrip-line-type LC phase shifter," Emerging Liquid Crystal Technologies Viii, Vol. 8642, 2013.

6. Follmann, R., D. Kother, M. A. Campo, et al. "Liquid-Sky-A tunable liquid crystal filter for space applications," Antennas and Propagation in Wireless Communications (APWC), 2013 IEEE-APS Topical Conference on IEEE, 90-93, 2013.
doi:10.1109/APWC.2013.6624872

7. Luxey, C. and J. M. Latheurte, "Simple design of dual-beam leaky-wave antennas in microstrips," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 144, No. 6, 397-402, 1997.
doi:10.1049/ip-map:19971407

8. Henry, R. and M. Okoniewski, "A broadside scanning substrate integrated waveguide periodic phase-reversal leaky-wave antenna," IEEE Antennas Wireless Propag. Lett., Vol. 15, 602-605, 2016.
doi:10.1109/LAWP.2015.2462733

9. Yau, D., N. V. Shuley, and L. O. McMillan, "Characteristics of microstrip leaky wave antenna using the method of moments," IEEE Proc. Microw. Antennas Propag., Vol. 146, No. 5, 324-328, October 1999.
doi:10.1049/ip-map:19990611

10. Yazdanpanahi, M., S. Bulja, D. Mirshekar-Syahkal, et al. "Measurement of dielectric constants of nematic liquid crystals at mm-wave frequencies using patch resonator," IEEE Transactions on Instrumentation & Measurement, Vol. 59, No. 12, 3079-3085, 2010.
doi:10.1109/TIM.2010.2062910