Vol. 71
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-02
The Magnetic Interaction Energy Between an Infinite Solenoid and a Passing Point Charge
By
Progress In Electromagnetics Research M, Vol. 71, 145-156, 2018
Abstract
The standard expression for the magnetic interaction energy used in the study of the Aharonov-Bohm effect is investigated. We calculate the magnetic interaction energy between a point charge and an infinite solenoid from first principles. Two alternative expressions are used: the scalar products of the currents with the vector potentials and the scalar product of the magnetic fields. The alternatives are seen to agree. The latter approach also involves taking into account surface integrals at infinity, which are shown to be zero. Our model problem indicates no classical Aharonov-Bohm effect, but we also discuss the normally neglected fact of energy non-conservation. The problem is treated from the point of view of Lagrangian and Hamiltonian mechanics.
Citation
Hanno Essén, and Johan C.-E. Sten, "The Magnetic Interaction Energy Between an Infinite Solenoid and a Passing Point Charge," Progress In Electromagnetics Research M, Vol. 71, 145-156, 2018.
doi:10.2528/PIERM18052908
References

1. Aharonov, Y. and D. Bohm, "Significance of the electromagnetic potentials in the quantum theory," Phys. Rev., Vol. 115, 485-491, 1959.
doi:10.1103/PhysRev.115.485

2. Olariu, S. and I. Iovitzu Popescu, "The quantum effects of electromagnetic fluxes," Rev. Mod. Phys., Vol. 57, 339-436, 1985.
doi:10.1103/RevModPhys.57.339

3. Batelaan, H. and A. Tonomura, "The Aharonov-Bohm effects: Variations on a subtle theme," Physics Today, 38-43, Sep. 2009.
doi:10.1063/1.3226854

4. Boyer, T. H., "Classical electromagnetic interaction of a charged particle with a constant-current solenoid," Phys. Rev. D, Vol. 8, 1667-1679, 1973.
doi:10.1103/PhysRevD.8.1667

5. Boyer, T. H., "Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: Considerations related to the Aharonov-Bohm effect," Phys. Rev. D, Vol. 8, 1679-1693, 1973.
doi:10.1103/PhysRevD.8.1679

6. Boyer, T. H., "The Aharonov-Bohm effect as a classical electromagnetic-lag effect: An electrostatic analogue and possible experimental test," Il Nuovo Cimento, Vol. 100B, 685-701, 1987.

7. Boyer, T. H., "Does the Aharonov-Bohm effect exist?," Found. Phys., Vol. 30, 893-905, 2000.
doi:10.1023/A:1003602524894

8. Boyer, T. H., "Classical electromagnetism and the Aharonov-Bohm phase shift," Found. Phys., Vol. 30, 907-932, 2000.
doi:10.1023/A:1003654508964

9. Boyer, T. H., "Darwin-Lagrangian analysis for the interaction of a point charge and a magnet: Considerations related to the controversy regarding the Aharonov-Bohm and Aharonov-Casher phase shifts," J. Phys. A: Math. Gen., Vol. 39, 3455-3477, 2006.
doi:10.1088/0305-4470/39/13/021

10. Chavoya-Aceves, O., "A classical explanation of the Bohm-Aharonov effect,", E-print arXiv:physics/0404031v1 [physics.gen-ph], Apr. 2004.

11. Fearn, H. and K. Nguyen, "Derivation of the Aharanov-Bohm phase shift using classical forces,", E-print arXiv:1104.1449 [quant-ph], Apr. 2011.

12. Ershkovich, A. and P. Israelevich, "Aharonov-Bohm effect and classical hamiltonian mechanics,", E-print arXiv:1105.0312 [physics.class-ph], May 2011.

13. Trammel, G. T., "Aharonov-Bohm paradox," Phys. Rev., Vol. 134, B1183-1184, 1964.
doi:10.1103/PhysRev.134.B1183

14. McGregor, S., R. Hotovy, A. Caprez, and H. Batelaan, "On the relation between the Feynman paradox and Aharonov-Bohm effects," New Journal of Physics, Vol. 14, 093020-1-22, 2012.
doi:10.1088/1367-2630/14/9/093020

15. Caprez, A., B. Barwick, and H. Batelaan, "Macroscopic test of the Aharonov-Bohm effect," Phys. Rev. Lett., Vol. 99, 210401-1-4, 2007.
doi:10.1103/PhysRevLett.99.210401

16. Chambers, R. G., "Shift of an electron interference pattern by enclosed magnetic flux," Phys. Rev. Lett., Vol. 5, 3-5, 1960.
doi:10.1103/PhysRevLett.5.3

17. Tonomura, A., N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, "Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave," Phys. Rev. Lett., Vol. 56, 792-795, 1986.
doi:10.1103/PhysRevLett.56.792

18. Ballesteros, M. and R. Weder, "The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results," J. Math. Phys., Vol. 50, 122108-1-55, 2009.
doi:10.1063/1.3266176

19. Peshkin, M., "Against a proposed alternative explanation of the Aharonov-Bohm effect," J. Phys. A: Math. Theor., Vol. 43, 354031-1-5, 2010.
doi:10.1088/1751-8113/43/35/354031

20. Franklin, J., "The nature of electromagnetic energy,", E-print arXiv:0707.3421v4 [physics.gen-ph], Sep. 2012.

21. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, 1941.

22. McDonald, K. T., "Electromagnetic field energy,", E-print http://www.hep.princeton.edu/∼mcdonald/examples/fieldenergy.pdf, Apr. 2002.

23. Essen, H., "Magnetism of matter and phase-space energy of charged particle systems," J. Phys. A: Math. Gen., Vol. 32, 2297-2314, 1999.
doi:10.1088/0305-4470/32/12/005

24. Landau, L. D. and E. M. Lifshitz, Mechanics, 3rd Ed., Pergamon, Oxford, 1976.

25. Essen, H., "Quantization and independent coordinates," Am. J. Phys., Vol. 46, 983-988, 1978.
doi:10.1119/1.11488

26. Berry, M. V., "Exact Aharonov-Bohm wavefunction obtained by applying Dirac’s magnetic phase factor," Eur. J. Phys., Vol. 1, 240-244, 1980.
doi:10.1088/0143-0807/1/4/011

27. Hernandes, J. A. and A. K. T. Assis, "Electric potential due to an infinite conducting cylinder with internal or external point charge," Journal of Electrostatics, Vol. 63, 1115-1131, 2005.
doi:10.1016/j.elstat.2005.02.005

28. Essen, H., "From least action in electrodynamics to magnetomechanical energy --- A review," Eur. J. Phys., Vol. 30, 515-539, 2009.
doi:10.1088/0143-0807/30/3/009