Vol. 77
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-07-30
Terahertz Polariton Dispersion in Uniaxial Optical Crystals
By
Progress In Electromagnetics Research Letters, Vol. 77, 109-115, 2018
Abstract
Phonon-polariton is the coupled excitation between optical phonon and photon. The remarkable frequency vs. wavevector dispersion relation of phonon-polariton contributes to important technological applications such as tunable terahertz radiation sources and basic materials science to clarify the terahertz dynamics of condensed matter such as lattice instability in ferroelectrics. This paper studies the broadband dispersion relation of phonon-polariton between 10 cm-1 and 1200 cm-1 in uniaxial ferroeletric crystals, LiNbO3 (LN) and LiTaO3 (LT) with polar trigonal system on the basis of the observed results using THz-Raman spectroscopy, THz time domain spectroscopy, and far-infrared spectroscopy. The dispersion on the lowest-frequency TO mode with A1(z) symmetry of LN and LT crystals, which are assigned as ferroelectric soft modes, is discussed.
Citation
Seiji Kojima, "Terahertz Polariton Dispersion in Uniaxial Optical Crystals," Progress In Electromagnetics Research Letters, Vol. 77, 109-115, 2018.
doi:10.2528/PIERL18050505
References

1. Born, M. and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, 1954.

2. Claus, R., L. Merten, and J. Brandmuller, Light Scattering by Phonon-polaritons, Springer-Verlag, 1975.
doi:10.1007/BFb0048910

3. Xu, Y., Ferroelectric Materials and Their Applications, North-Holland, Amsterdam, 1991.

4. Volk, T. and M. Wohlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer Series in Materials Science, 2008.

5. Henry, C. H. and J. J. Hopfield, "Raman scattering by polaritons," Phys. Rev. Lett., Vol. 15, 964-966, 1965.
doi:10.1103/PhysRevLett.15.964

6. Wiederrecht, G. P., T. P. Dougherty, L. Dhar, K. A. Nelson, D. E. Leaird, and A. M. Weiner, "Explanation of anomalous polariton dynamics in LiTaO3," Ferroelectrics, Vol. 150, 103-118, 1993.
doi:10.1080/00150199308008698

7. Bond, W. L., "Measurement of the refractive indices of several crystals," J. Appl. Phys., Vol. 36, 1674-1677, 1965.
doi:10.1063/1.1703106

8. Kojima, S. and T. Nakamura, "Observation of low frequency polaritons in barium sodium niobate," Jpn. J. Appl. Phys., Vol. 19, L609-610, 1980.
doi:10.1143/JJAP.19.L609

9. Kojima, S. and T. Mori, " Terahertz time-domain spectroscopy of infrared active soft mode and phonon-polariton dispersion," Ferroelectrics, Vol. 500, 183-202, 2016.
doi:10.1080/00150193.2016.1214522

10. Kojima, S., K. Kanehara, T. Hoshina, and T. Tsurumi, "Optical phonons and polariton dispersions of congruent LiNbO3 studied by far-infrared spectroscopic ellipsometry and Raman scattering," Jpn. J. Appl. Phys., Vol. 55, 10TC02-1-5, 2016.

11. Kojima, S., "Composition variation of optical phonon damping in lithium niobate crystals," Jpn. J. Appl. Phys., Vol. 32, 4373-4376, 1993.
doi:10.1143/JJAP.32.4373

12. Kojima, S., H. Kitahara, M. Wada Takeda, and S. Nishizawa, "Terahertz time domain spectroscopy of phonon-polaritons in ferroelectric lithium niobate crystals," Jpn. J. Appl. Phys., Vol. 41, 7033-7037, 2002.
doi:10.1143/JJAP.41.7033

13. Kojima, S., H. Kitahara, S. Nishizawa, and M. Wada Takeda, "Dielectric properties of ferroelectric lithium tantalate crystals studied by terahertz time-domain spectroscopy," Jpn. J. Appl. Phys., Vol. 42, 6238-6241, 2003.
doi:10.1143/JJAP.42.6238

14. Margueron, S., A. Bartasyte, A. M. Glazer, E. Simon, J. Hlinka, I. Gregora, and J. Gleize, "Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3," J. Appl. Phys., Vol. 111, 104105-1-6, 2012.
doi:10.1063/1.4716001

15. Kojima, S. and T. Nakamura, "Low frequency phonon polaritons in several ferroelectrics," Ferroelectrics, Vol. 37, 677-680, 1981.
doi:10.1080/00150198108223519

16. Kojimam, S. and T. Nakamura, "Polariton-spectroscopy in several ferroelectric crystals," Ferroelectrics, Vol. 52, 171-180, 1983.
doi:10.1080/00150198308208250

17. Kojima, S., H. Kitahara, S. Nishizawa, and M. Wada Takeda, "Dielectric properties of ferroelectric lithium tantalate crystals studied by terahertz time-domain spectroscopy," Jpn. J. Appl. Phys., Vol. 42, 6238-6241, 2004.
doi:10.1143/JJAP.42.6238

18. Bakker, H. J., S. Hunsche, and H. Kurz, "Coherent phonon polaritons as probes of anharmonic phonons in ferroelectrics," Rev. Mod. Phys., Vol. 70, 523-536, 1998.
doi:10.1103/RevModPhys.70.523

19. Crimmins, T. F., N. S. Stoyanov, and K. A. Nelson, "Heterodyned impulsive stimulated Raman scattering of phonon-polaritons in LiTaO3 and LiNbO3," J. Chem. Phys., Vol. 117, 2882-2896, 2002.
doi:10.1063/1.1491948

20. Penna, A. F., S. P. S. Porto, and E. Wiener-Avnear, "Anomalous polariton dispersion in LiTaO3 near TC," Solid State Commun., Vol. 23, 377-380, 1977.
doi:10.1016/0038-1098(77)90236-8