Vol. 74
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-04
Design of a Miniaturized Symmetric Folded Substrate Integrated Waveguide Filter
By
Progress In Electromagnetics Research M, Vol. 74, 61-71, 2018
Abstract
Substrate integrated waveguide (SIW) is widely used in filter design due to its advantages of high Q value, high power capacity, small size and easy integration. In this paper, a symmetric folded substrate integrated waveguide (SFSIW) miniaturization method is proposed. Through the comparison of the miniaturization degree of the resonant cavity before and after folding, the feasibility of this method is verified, and the miniaturization theory of SIW filter is further improved. Using a symmetrically folded SIW resonator, a two-cavity filter and a three-cascaded cross-coupling filter were designed. This structure achieves better miniaturization of the filter. The high Q value of the SFSIW resonator makes the filter's insertion loss smaller, the transmission characteristics better, and the simulation and measurement results are consistent.
Citation
Kaiwei Zuo, Yong-Zhong Zhu, Yang Yu, Yicheng Zhang, and Zhihao Meng, "Design of a Miniaturized Symmetric Folded Substrate Integrated Waveguide Filter," Progress In Electromagnetics Research M, Vol. 74, 61-71, 2018.
doi:10.2528/PIERM18050401
References

1. Chen, X. P. and K. Wu, "Substrate integrated waveguide lter: Basic design rules and fundamental structure features," IEEE Microwave Magazine, Vol. 15, No. 5, 108-116, 2014.
doi:10.1109/MMM.2014.2321263

2. Hong, J. S., "Compact folded-waveguide resonators," Microwave Symposium Digest, 2004 IEEE MTT-S International. IEEE, Vol. 1, 213-216, 2004.
doi:10.1109/MWSYM.2004.1335847

3. Zhang, R., Z. Wang, and B. Yan, "Dual-mode folded substrate integrated waveguide (FSIW) lters with LTCC technology," International Conference on Microwave and Millimeter Wave Technology. IEEE, 1483-1485, 2010.

4. Zhou, J., Y. Z. Zhu, and Z. Liu, "A novel miniaturization double folded quarter mode substrate integrated waveguide lter design in LTCC," Progress In Electromagnetics Research Letters, Vol. 60, 127-132, 2016.
doi:10.2528/PIERL16041401

5. Chien, H. Y., T. M. Shen, T. Y. Huang, et al. "Miniaturized bandpass lters with double-folded substrate integrated waveguide resonators in LTCC," IEEE Transactions on Microwave Theory & Techniques, Vol. 57, No. 7, 1774-1782, 2009.
doi:10.1109/TMTT.2009.2022591

6. Zhang, R., Z. Wang, B. Yan, et al. "FSIW cavity lter and derivative FSIW cavity and its lters with LTCC technology," Microwave Conference, 2009. APMC 2009. Asia Paci c. IEEE, 1360-1363, 2010.

7. Huang, T. Y., T. M. Shen, and R. B. Wu, "A miniaturized bandpass lter using quadruple folded laminated waveguide cavity resonators in LTCC," Microwave Conference Proceedings. IEEE, 99-102, 2011.

8. Tan, L., Z. Q. Xu, Z. Chen, et al. "A multilayer T-septum substrate integrated waveguide lter," Electromagnetics, Vol. 37, No. 4, 203-211, 2017.
doi:10.1080/02726343.2017.1316229

9. Lin, H. H., "Novel folded resonators and lters," Microwave Symposium, 2007. IEEE/MTT-S International. IEEE, 1277-1280, 2007.
doi:10.1109/MWSYM.2007.380426