Vol. 77
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-06-12
Substrate Integrated Waveguide Without Metallized Wall Posts
By
Progress In Electromagnetics Research Letters, Vol. 77, 7-12, 2018
Abstract
A simplified design of substrate integrated waveguide (SIW) is proposed here. The requirement of side walls using via which is quite cumbersome in the manufacturing process is eliminated in this structure. The design is based on producing an imaginary electric boundary by exciting the SIW using differential feed. It behaves as a pair of half mode substrate integrated waveguides (HMSIWs) sharing a common electric boundary. The new structure gives similar characteristics of the conventional SIW in terms of cutoff frequency, stopband rejection and operating bandwidth.
Citation
Arimpoorpallan Lindo, Anju Mathews, and Chandroth K. Aanandan, "Substrate Integrated Waveguide Without Metallized Wall Posts," Progress In Electromagnetics Research Letters, Vol. 77, 7-12, 2018.
doi:10.2528/PIERL18041806
References

1. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- A new concept for highfrequency electronics and optoelectronics," 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, Vol. 1, P-III-P-X, October 2003.

2. Che, W., K. Deng, D. Wang, and Y. L. Chow, "Analytical equivalence between substrate-integrated waveguide and rectangular waveguide," IET Microw. Antennas Propag., Vol. 2, No. 1, 35-41, February 2008.
doi:10.1049/iet-map:20060283

3. Deslandes, D. and K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2516-2526, 2006.
doi:10.1109/TMTT.2006.875807

4. Cai, Y., Y. Zhang, Z. Qian, W. Cao, and S. Shi, "Compact wideband dual circularly polarized substrate integrated waveguide horn antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3184-3189, July 2016.
doi:10.1109/TAP.2016.2554627

5. Parment, F., A. Ghiotto, T. P. Vuong, J. M. Duchamp, and K. Wu, "Low-loss air-filled substrate integrated waveguide (SIW) band-pass filter with inductive posts," European Microwave Conference (EuMC), 761-764, 2015.

6. Doghri, A., T. Djerafi, A. Ghiotto, and K.Wu, "Substrate integrated waveguide directional couplers for compact three-dimensional integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 1, 209-221, January 2015.
doi:10.1109/TMTT.2014.2376560

7. Cheng, Y. J., "Substrate integrated waveguide frequency-agile slot antenna and its multibeam appication," Progress In Electromagnetic Research, Vol. 130, 153-168, 2012.
doi:10.2528/PIER12061602

8. Huang, Y., Z. Shao, and L. Liu, "A substrate integrated waveguide bandpass filter using novel defected ground structure shape," Progress In Electromagnetic Research, Vol. 135, 201-213, 2013.
doi:10.2528/PIER12110411

9. Huang, J.-Q., D. Lei, C. Jiang, Z. Tang, F. Qiu, M. Yao, and Q.-X. Chu, "Novel circularly polarized SIW cavity-backed antenna with wide CP beamwidth by using dual orthogonal slot split rings," Progress In Electromagnetic Research C, Vol. 73, 97-104, 2017.
doi:10.2528/PIERC17021706

10. Moro, R., S. Agneessens, H. Rogier, A. Dierck, and M. Bozzi, "Textile microwave components in substrate integrated waveguide technology," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 2, 422-432, February 2015.
doi:10.1109/TMTT.2014.2387272

11. Parment, F., A. Ghiotto, T. P. Vuong, J. M. Duchamp, and K. Wu, "Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 4, 1228-1238, April 2015.
doi:10.1109/TMTT.2015.2408593

12. Grigoropoulos, N., B. S. Izquierdo, and P. R. Young, "Substrate integrated folded waveguides (SIFW) and filters," IEEE Microw. Wirel. Compon. Lett., Vol. 15, 829-831, 2005.
doi:10.1109/LMWC.2005.860027

13. Hong, W., B. Liu, Y. Q. Wang, et al. "Half Mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proc. Joint 31th Int. Conf. Infrared and Millimeter Waves/14th Int. Conf. Terahertz Electronics Shanghai, 18-23, September 2006.

14. Lai, Q., Ch. Fumeaux, W. Hong, and R. Vahldieck, "Characterization of the propagation properties of the half-mode substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 57, 1996-2004, 2009.

15. Wang, N., C. Jin, X. Xu, and H. Sun, "Quarter-mode substrate integrated waveguide," Asia-Pacific Microwave Conference, Sendai, Japan, 286-288, 2014.

16. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909, 2011.
doi:10.1049/iet-map.2010.0463

17. Tu, W. H. and K. Chang, "Wide-band microstrip-to-coplanar stripline-slotline transitions," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1084-1089, March 2006.
doi:10.1109/TMTT.2005.864127