Vol. 162
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-07-17
Layer-to-Layer Angle Interlock 3D Woven Bandstop Frequency Selective Surface
By
Progress In Electromagnetics Research, Vol. 162, 81-94, 2018
Abstract
A flexible fully textile-integrated bandstop frequency selective surface working at a central frequency of 3.75 GHz and presenting a 0.6 GHz bandwidth has been designed, manufactured and experimentally characterised. The frequency selective surface consists of a multilayered woven fabric whose top layer presents periodic cross-shaped conductive resonators, and due to its symmetries, its performance is largely independent of polarisation and angle of incidence. These properties make the prototype very interesting for shielding applications. The designed frequency selective surface is based on a layer-to-layer angle interlock 3D woven fabric. This technology provides the prototype with flexibility, portability and the possibility of manufacturing it in a large scale production by the use of existing industrial weaving machinery, in contrast to conventional frequency selective surfaces manufactured using rigid substrates. The proposed textile frequency selective surface has been simulated and experimentally validated providing good agreement between the simulations and measurements. The measured maximum attenuation has been found to be higher than 25 dB under normal incidence conditions.
Citation
Leticia Alonso-Gonzalez, Samuel Ver-Hoeye, Miguel Fernandez-Garcia, and Fernando Las Heras Andres, "Layer-to-Layer Angle Interlock 3D Woven Bandstop Frequency Selective Surface," Progress In Electromagnetics Research, Vol. 162, 81-94, 2018.
doi:10.2528/PIER18041707
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, 1-25, Wiley-Interscience Publication, 2000.
doi:10.1002/0471723770

2. Tak, J. and J. Choi, "A wearable metamaterial microwave absorber," IEEE Antennas Wireless Propag. Lett., Vol. 16, 784-787, Aug. 2016.
doi:10.1109/LAWP.2016.2604257

3. Rouzegar, S. M., A. Alighanbari, and O. M. Ramahi, "Wideband uniplanar artificial magnetic conductors based on curved coupled microstrip line resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 4, 326-328, Apr. 2017.
doi:10.1109/LMWC.2017.2678434

4. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem Cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

5. Zhang, J. C., Y. Z. Yin, and J. P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

6. Fu, W., J. Li, H. Wang, and X. Shen, "Polarization insensitive wide-angle triple-band metamaterial bandpass filter," 2016 Progress In Electromagnetic Research Symposium (PIERS), 4939, Shanghai, China, Aug. 8–11, 2016.

7. Xu, C., et al. "A novel dual-stop-band FSS for infrared stealth applications," Int. Applied Computational Electromagnetics Soc. Symp. (ACES), Suzhou, China, Aug. 1–4, 2017.

8. Nauman, M. and W. T. Khan, "A miniaturized dual-band stop frequency selective surface for 900MHz and 1800 MHz bands shielding," 11th European Conf. on Antennas and Propag. (EUCAP), Paris, France, Mar. 19–24, 2017.

9. Xiong, X., et al. "WiFi band-stop FSS for increased privacy protection in smart building," IEEE 6th Int. Symp. on Microw. Antenna Propag. and EMC Technol. (MAPE), 826-828, Shanghai, China, Oct. 28–30, 2015.

10. Liu, N., et al. "A design method for synthesizing wideband band-stop FSS via its equivalent circuit model," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 2721-2725, Aug. 2017.
doi:10.1109/LAWP.2017.2743114

11. Yan, M., S. Qu, J. Wang, M. Feng, W. Wang, C. Xu, Z. Li, L. Zheng, and H. Zhou, "A novel miniaturized dual-stop-band FSS for Wi-Fi application," 2016 Progress In Electromagnetic Research Symposium (PIERS), 3447-3450, Shanghai, China, Aug. 8–11, 2016.

12. Nisanci, M. H., et al. "Experimental validation of a 3D FSS designed by periodic conductive fibers. Part-2: Band-stop filter characteristic," IEEE Trans. on Electromagnetic Compatibility, Vol. 59, No. 6, 1835-1840, Jun. 2017.
doi:10.1109/TEMC.2017.2698835

13. Li, L., J. Wang, J. Wang, H. Ma, M. Feng, M. Yan, J. Zhang, and S. Qu, "All-dielectric metamaterial band stop frequency selective surface via high-permittivity ceramics," 2016 Progress In Electromagnetic Research Symposium (PIERS), 3324-3326, Shanghai, China, Aug. 8–11, 2016.

14. Fu, W., et al. "Polarization insensitive wide-angle triple-band metamaterial bandpass filter," Journal of Physics D: Applied Physics, Vol. 49, No. 28, 2016.
doi:10.1088/0022-3727/49/28/285110

15. Fallah, M., A. Ghayekhloo, and A. Abdolali, "Design of frequency selective band stop shield using analytical method," Journal of Microw., Optoelectronics and Electromagnetic Applications, Vol. 14, No. 2, Dec. 2015.
doi:10.1590/2179-10742015v14i2536

16. Ginestet, G., et al. "Embroidered antenna-microchip interconnections and contour antennas in passive UHF RFID textile tags," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1205-1208, Nov. 2017.

17. Paraskevopoulos, A., et al. "Higher-mode textile patch antenna with embroidered vias for on-body communication," IET Microw. Antennas and Propag., Vol. 10, No. 7, 802-807, May 2016.
doi:10.1049/iet-map.2015.0650

18. Kiourti, A., C. Lee, and J. L. Volakis, "Fabrication of textile antennas and circuits with 0.1mm precision," IEEE Antennas Wireless Propag. Lett., Vol. 15, 151-153, May 2016.
doi:10.1109/LAWP.2015.2435257

19. Wang, Z., L. Zhang, Y. Bayram, and J. L. Volakis, "Embroidered conductive fibers on polymer composite for conformal antennas," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4141-4147, Sept. 2012.
doi:10.1109/TAP.2012.2207055

20. Acti, T., et al. "Embroidered wire dipole antennas using novel copper yarns," IEEE Antennas Wireless Propag. Lett., Vol. 14, 638-64, Nov. 2015.

21. Senbokuya, Y. and H. Tsunoda, "A study on the circular patch antennas using conductive nonwoven fiber fabrics," IEEE Antennas Propag. Soc. Int. Symp., San Antonio, TX, USA, Jun. 16–21, 2002.

22. Monti, G., L. Corchia, E. De Benedetto, and L. Tarricone, "Wearable logo-antenna for GPS GSMbased tracking systems," IET Microw. Antennas and Propag., Vol. 10, No. 12, 1332-1338, Sep. 2016.
doi:10.1049/iet-map.2015.0774

23. Shawl, R. K., B. R. Longj, D. H. Werner, and A. Gavrin, "The characterization of conductive textile materials intended for radio frequency applications," IEEE Antennas Propag. Mag., Vol. 49, No. 3, 28-40, Jun. 2007.
doi:10.1109/MAP.2007.4293934

24. Lin, X., B. C. Seet, and F. Joseph, "Fabric antenna with body temperature sensing for BAN applications over 5G wireless systems," Int. Conf. on Sensing Technol., Auckland, New Zealand, Dec. 8–10, 2015.

25. Yahya, R., M. R. Kamarudin, N. Seman, and H. U. Iddi, "Eye shaped fabric antenna for UWB application," IEEE Antennas Propag. Soc. Int. Symp., Orlando, FL, Jul. 7–13, 2013.

26. Elmobarak Elobaid, H. A., S. K. Abdul Rahim, M. Himdi, X. Castel, and M. Abedian Kasgari, "A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1333-1336, Dec. 2016.

27. Whittow, W. G., et al. "Inkjet-printed microstrip patch antennas realized on textile for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 13, 71-74, Jan. 2014.
doi:10.1109/LAWP.2013.2295942

28. Chauraya, A., et al. "Inkjet printed dipole antennas on textiles for wearable communications," IET Microw. Antennas and Propag., Vol. 7, No. 9, 760-767, Jun. 2013.
doi:10.1049/iet-map.2013.0076

29. Scarpello, M. L., I. Kazani, C. Hertleer, H. Rogier, and D. Vande Ginste, "Stability and efficiency of screen-printed wearable and washable antennas," IEEE Antennas Wireless Propag. Lett., Vol. 11, 838-841, Jul. 2012.

30. Akbari, M., L. Sydanheimo, Y. Rahmat-Sami, J. Virkki, and L. Ukkonen, "Implementation and performance evaluation of graphene-based passive UHF RFID textile tags," Int. Symp. Electromagnetic Theory, Espoo, Finland, Aug. 14–18, 2016.

31. Moro, R., S. Agneessens, H. Rogier, A. Dierck, and M. Bozzi, "Textile microwave components in substrate integrated waveguide technology," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 2, 422-432, Feb. 2015.
doi:10.1109/TMTT.2014.2387272

32. Liu, F. X., Z. Xu, D. C. Ranasinghe, and C. Fumeaux, "Textile folded half-mode substrateintegrated cavity antenna," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1693-1697, Feb. 2016.
doi:10.1109/LAWP.2016.2524458

33. Tahseen, M. M. and A. A. Kishk, "Flexible and portable textile-reflectarray backed by frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 1, 46-49, Jan. 2018.
doi:10.1109/LAWP.2017.2772919

34. Whittow, W. G., et al. "Printed frequency selective surfaces on textiles," Electr. Lett., Vol. 50, No. 13, 916-917, Jun. 19, 2014.
doi:10.1049/el.2014.0955

35. Ghebrebrhan, M., et al. "Textile frequency selective surface," IEEE Microw. Wireless Components Lett., Vol. 27, No. 11, 989-991, Nov. 2017.
doi:10.1109/LMWC.2017.2750031

36. Alonso-Gonzalez, L., et al. "Novel parametric electromagnetic modelling to simulate textile integrated circuits," Int. Conf. Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (N, Seville, Spain, May 17–19, 2017.

37. Alonso-Gonzalez, L., et al. "On the techniques to develop millimeter-wave textile integrated waveguides using rigid warp threads," IEEE Trans. Microw. Theory and Techn., Vol. 66, No. 2, 751-761, 2018.
doi:10.1109/TMTT.2017.2777983

38. Alonso-Gonzalez, L., et al. "Fully textile-integrated microstrip-fed slot antenna for dedicated shortrange communications," IEEE Trans. Antennas Propag., 2018.

39. Shieldex Trading "Shieldex R  Conductive Twisted Yarn Silver Plated Nylon 66 Yarn 117/17 dtex 2-ply,", PN# 260121011717, 2010 [Revised Jan. 2012], [Online], Available: www.shopvtechtextiles.com/assets/images/260121011717.pdf, [Accessed Jan. 21, 2018].

40. Yu, B., et al. "2D and 3D imaging of fatigue failure mechanisms of 3D woven composites," Composites Part A: Applied Science and Manufacturing, Vol. 77, 37-49, Oct. 2015.

41. Jin, L., et al. "Tension-tension fatigue behavior of layer-to-layer 3-D angle-interlock woven composites," Materials Chemistry and Physics, Vol. 140, 183-190, Jun. 2013.
doi:10.1016/j.matchemphys.2013.03.020

42. Long, A. C. and L. P. Brown, Composite Reinforcements for Optimum Performance: Modelling the Geometry of Textile Reinforcements for Composites: Tex- Gen, Woodhead Publishing Ltd, 2011, ISBN: 978-1-84569-965-9, [Online], Available: www.woodheadpublishing.com/en/book.aspx?bookID=2233.

43. Lin, H., L. P. Brown, and A. C. Long, "Modelling and simulating textile structures using TexGen," Advanced Materials Research, Vol. 331, 44-47, 2011.
doi:10.4028/www.scientific.net/AMR.331.44