Vol. 76
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-29
Design of a Ku-Band Filter Based on Groove Gap Waveguide Technology
By
Progress In Electromagnetics Research Letters, Vol. 76, 71-76, 2018
Abstract
This paper presents a Ku-band filter based on groove gap waveguide (GGW) technology which is composed of a filter with two transitions GGW and WR-62. The filter is operated from 13.8 GHz to 14.2 GHz. Actually, a fractional bandwidth of about 2.85% is obtained for maximum return loss of 20 dB and the maximum insertion loss of 0.05 dB over the bandwidth. The validity of the design results is confirmed both numerically and experimentally. Measurement results show that the performance of filter agrees well with simulation. This filter could be used as part of a gap waveguide based structure.
Citation
Davoud Zarifi, and Marziye Nasri, "Design of a Ku-Band Filter Based on Groove Gap Waveguide Technology," Progress In Electromagnetics Research Letters, Vol. 76, 71-76, 2018.
doi:10.2528/PIERL18041202
References

1. Hunter, I. C., Theory and Design of Microwave Filters (Electromagnetic Wave), Ch. 1, IET, 2006.

2. Vahldieck, R. and W. J. R. Hoefer, "Finline and metal insert filters with improved passband separation and increased stopband attenuation," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 12, 1333-1339, Dec. 1985.
doi:10.1109/TMTT.1985.1133222

3. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications (Microwave and Optical Engineering), Wiley, 2001.
doi:10.1002/0471221619

4. Kildal, P.-S., E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, "Local metamaterial-based waveguides in gaps between parallel metal plates," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 84-87, 2009.
doi:10.1109/LAWP.2008.2011147

5. Kildal, P.-S., "Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves," Proc. 3rd Eur. Conf. Antennas Propag., Berlin, Mar. 2009.

6. Zarifi, D., A. Farahbakhsh, A. U. Zaman, and P. S. Kildal, "Design and fabrication of a high-gain 60 GHz corrugated slot antenna array with ridge gap waveguide distribution layer," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2905-2913, Jul. 2016.
doi:10.1109/TAP.2016.2565682

7. Dong, X., H. Wang, F. Xue, and Y. Liu, "Design and measurement of a novel seamless scanning leaky wave antenna in ridge gap waveguide technology," Progress In Electromagnetics Research M, 147-157, 2017.
doi:10.2528/PIERM17051801

8. Zarifi, D., A. Farahbakhsh, A. U. Zaman, and P. S. Kildal, "A gap waveguide-fed wideband patch antenna array for 60-GHz applications," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4875-4879, 2017.
doi:10.1109/TAP.2017.2722866

9. Vosoogh, A. and P.-S. Kildal, "Corporate-fed planar 60GHz slot array made of three unconnected metal layers using AMC pin surface for the Gap waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1935-1938, 2015.

10. Alos, E. A., A. U. Zaman, and P.-S. Kildal, "Ka-band gap waveguide coupled-resonator filter for radio link diplexer application," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 5, 870-879, May 2013.
doi:10.1109/TCPMT.2012.2231140

11. Del Olmo-Olmeda, A., M. Baquero-Escudero, V. E. Boria-Esbert, A. Valero-Nogueira, and A. J. Berengure-Verdu, "A novel band-pass filter topology for millimeter-wave applications based on the groove gap waveguide," Proc. IEEE MTT-S Int. Dig., 1-4, 2013.