Vol. 69
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-12
Direction of Arrival Estimation Based on Heterogeneous Array
By
Progress In Electromagnetics Research M, Vol. 69, 97-106, 2018
Abstract
Traditionally, the direction of arrival (DOA) estimation usually employs homogeneous antenna arrays consisting of many identical antennas. This paper proposes a new technique of DOA estimation by using a heterogeneous array which has many elements with each element pointing to a different direction from others. A general expression of the manifold for planar heterogeneous array is derived. Then, a polarized MUSIC (Pol-MUSIC) method for unknown polarizations is proposed. One advantage of this Pol-MUSIC method is that it can obtain the DOA of signals with any unknown polarizations while no search of the polarizations is required. The proposed method is verified by simulation, and its performance is analyzed. The heterogeneous array is a polarization-sensitive array though it has one channel at each point of spatial sampling. This provides favorable conditions for simplifying the systems.
Citation
Xiaofei Ren, and Shu-Xi Gong, "Direction of Arrival Estimation Based on Heterogeneous Array," Progress In Electromagnetics Research M, Vol. 69, 97-106, 2018.
doi:10.2528/PIERM18041105
References

1. Kornaros, E., S. Kabiri, and F. De Flaviis, "A novel model for direction finding and phase center with practical considerations," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 5475-5491, Oct. 2017.
doi:10.1109/TAP.2017.2735462

2. Wang, M., X. Ma, and S. Yan, "An autocalibration algorithm for uniform circular array with unknown mutual coupling," IEEE Antennas Wireless Propag. Lett., Vol. 15, 12-15, 2016.
doi:10.1109/LAWP.2015.2425423

3. Searle, S., "Disambiguation of interferometric DOA estimates in vehicular passive radar," IET Radar, Sonar & Navigation, Vol. 12, No. 1, 64-73, Jan. 2018.
doi:10.1049/iet-rsn.2017.0046

4. Yang, M., J. Ding, B. Chen, and X. Yuan, "A multiscale sparse array of spatially spread electromagnetic-vector-sensors for direction finding and polarization estimation," IEEE Access, Vol. 6, 9807-9818, Jan. 2018.
doi:10.1109/ACCESS.2018.2799905

5. He, J., Z. Zhang, T. Shu, and W. Yu, "Direction finding of multiple partially polarized signals with a nested cross-diople array," IEEE Antennas Wireless Propag. Lett., Vol. 6, 1679-1682, Feb. 2017.
doi:10.1109/LAWP.2017.2665591

6. Wong, K. T., Y. Song, C. J. Fulton, S. Khan, and W.-Y. Tam, "Electrically “long” dipoles in a collocated/orthogonal triad — For direction finding and polarization estimation," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 6057-6067, Nov. 2017.
doi:10.1109/TAP.2017.2748183

7. Meloling, J. H., J. W. Wockway, and M. P. Daly, "A vector-sensing antenna system, a highfrequency, vector-sensing array based on the two-port loop antenna element," IEEE Antenna & Propagation Magazine, 57-63, Dec. 2016.
doi:10.1109/MAP.2016.2609813

8. Erthel, Y., "HF radio direction finding operating on a heterogeneous array: Principle and experimental validation," Radio Science, Vol. 39, No. 1, 1-16, 2004.

9. Muller, R., S. Lutz, and R. Lorch, "A noel circular direction finding antenna array for unknown polariztion," Proc. 7th Eur. Conf. Antennas Propag. (EuCAP), 1514-1518, Gothenburg, Sweden, Apr. 2013.

10. Loy, T. and S. W. Lee, Antenna Handbook, New York, Chapman & Hall, 1993.

11. Weiss, A. J. and B. Friedlander, "Analysis of a signal estimation algorithm for diversely polarized arrays," IEEE Transactions on Signal Processing, Vol. 41, No. 8, 2628-2638, Aug. 1993.
doi:10.1109/78.229894

12. Friedlander, B., "Antenna array manifolds for high-resolution direction finding," IEEE Transactions on Signal Processing, Vol. 66, No. 4, 923-932, Nov. 2017.
doi:10.1109/TSP.2017.2778683

13. Schmidt "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830