Vol. 162
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-06-13
Identfication of Main Factors of Uncertainty in a Microstrip Line Network
By
Progress In Electromagnetics Research, Vol. 162, 61-72, 2018
Abstract
This paper deals with uncertainty propagation applied to the analysis of crosstalk in printed circuit board microstrip traces. Complex interconnection networks generally are affected by many uncertain parameters and their point-to-point transfer functions are computationally expensive, thus making Monte-Carlo analyses rather inefficient. To overcome this situation, a metamodel is highly desirable. This paper presents a sparse and accelerated polynomial chaos approach, which proves to be well adapted for high-dimensional uncertainty quantification and well suited for the sensitivity analysis of crosstalk effects. We highlight the significant advantage of the advocated approach for the design of microstrip line networks of complex topology. In fact, we demonstrate how a small number of system simulations can help to quantify the statistics of the output variability and identify a reduced set of high-impact parameters.
Citation
Mourad Larbi, Igor Simone Stievano, Flavio Canavero, and Philippe Besnier, "Identfication of Main Factors of Uncertainty in a Microstrip Line Network," Progress In Electromagnetics Research, Vol. 162, 61-72, 2018.
doi:10.2528/PIER18040607
References

1. Rong, A. and A. C. Cangellaris, "Interconnect transient simulation in the presence of layout and routing uncertainty," 2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems, 157-160, Oct. 2011.

2. Prasad, A. K., M. Ahadi, B. S. Thakur, and S. Roy, "Accurate polynomial chaos expansion for variability analysis using optimal design of experiments," 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, Aug. 2015.

3. Ginste, D. V., D. D. Zutter, D. Deschrijver, T. Dhaene, P. Manfredi, and F. Canavero, "Stochastic modeling-based variability analysis of on-chip interconnects," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, No. 7, 1182-1192, Jul. 2012.
doi:10.1109/TCPMT.2012.2192274

4. Biondi, A., P. Manfredi, D. V. Ginste, D. D. Zutter, and F. G. Canavero, "Variability analysis of interconnect structures including general nonlinear elements in spice-type framework," Electronics Letters, Vol. 50, No. 4, 263-265, Feb. 2014.
doi:10.1049/el.2013.3191

5. Pham, T. A., E. Gad, M. S. Nakhla, and R. Achar, "Decoupled polynomial chaos and its applications to statistical analysis of high-speed interconnects," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, No. 10, 1634-1647, Oct. 2014.
doi:10.1109/TCPMT.2014.2340815

6. Prasad, A. K. and S. Roy, "Global sensitivity based dimension reduction for fast variability analysis of nonlinear circuits," 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), 97-100, Oct. 2015.

7. Zhang, Z., T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, "Calculation of generalized polynomialchaos basis functions and gauss quadrature rules in hierarchical uncertainty quantification," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 33, No. 5, 728-740, May 2014.
doi:10.1109/TCAD.2013.2295818

8. Zhang, Z., T. W. Weng, and L. Daniel, "Big-data tensor recovery for high-dimensional uncertainty quantification of process variations," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 5, 687-697, May 2017.
doi:10.1109/TCPMT.2016.2628703

9. Prasad, A. K. and S. Roy, "Accurate reduced dimensional polynomial chaos for efficient uncertainty quantification of microwave/RF networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3697-3708, 2017.
doi:10.1109/TMTT.2017.2689742

10. Blatman, G. and B. Sudret, "Adaptive sparse polynomial chaos expansion based on least angle regression," Journal of Computational Physics, Vol. 230, No. 6, 2345-2367, 2011.
doi:10.1016/j.jcp.2010.12.021

11. Larbi, M., I. S. Stievano, F. G. Canavero, and P. Besnier, "Variability impact of many design parameters: The case of a realistic electronic link," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 34-41, Feb. 2018.
doi:10.1109/TEMC.2017.2727961

12. Soize, C. and R. Ghanem, "Physical systems with random uncertainties: Chaos representations with arbitrary probability measure," SIAM Journal on Scientific Computing, Vol. 26, No. 2, 395-410, 2004.
doi:10.1137/S1064827503424505

13. Berveiller, M., B. Sudret, and M. Lemaire, "Stochastic finite element: A non intrusive approach by regression," European Journal of Computational Mechanics, Vol. 15, No. 1-3, 81-92, 2006.
doi:10.3166/remn.15.81-92

14. Montgomery, D. C., Design and Analysis of Experiments, John Wiley & Sons, 2004.

15. Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," The Annals of Statistics, Vol. 32, No. 2, 407-499, 2004.
doi:10.1214/009053604000000067

16. Sobol, I. M., "Sensitivity estimates for nonlinear mathematical models," Mathematical Modelling and Computational Experiments, Vol. 1, No. 4, 407-414, 1993.

17. Sudret, B., "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering & System Safety, Vol. 93, No. 7, 964-979, 2008.
doi:10.1016/j.ress.2007.04.002

18. Tang, T. K. and M. S. Nakhla, "Analysis of high-speed VLSI interconnects using the asymptotic waveform evaluation technique," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 11, No. 3, 341-352, Mar. 1992.
doi:10.1109/43.124421

19. Marelli, S. and B. Sudret, "UQLab: A framework for uncertainty quantification in matlab," Proc. 2nd Int. Conf. on Vulnerability Risk Analysis and Management, 2554-2563, Liverpool, 2014.

20. McKay, M. D., R. J. Beckman, and W. J. Conover, "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code," Technometrics, Vol. 42, No. 1, 55-61, 2000.
doi:10.1080/00401706.2000.10485979