Vol. 76
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-21
Design of Terahertz Short-Slot Coupler with Curved Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 76, 27-32, 2018
Abstract
The design of a terahertz short-slot coupler with curved waveguide is proposed. A traditional short-slot coupler uses a step-like structure in order to suppress higher order modes and improve bandwidth. It becomes difficult to control the fabrication of tiny steps with the incensement of frequency especially in terahertz band. The designed coupler is composed of two curved waveguides overlapping in the middle to realize a specific coupling coefficient. Then the step-like structure can be replaced with a curved structure which is much easier to fabricate. The coupling coefficient of the coupler is 3 dB, and the variation is less than 1dB around the center frequency. The phase difference between two output ports is 90°. The isolation is greater than 10 dB in the whole working band. Measured results show high agreement with simulation predictions. The designed coupler can be widely used as feed networks of horn antenna array.
Citation
Wu Pan, Hao Cheng, Xia Yin, and Xuan Li, "Design of Terahertz Short-Slot Coupler with Curved Waveguide," Progress In Electromagnetics Research Letters, Vol. 76, 27-32, 2018.
doi:10.2528/PIERL18033001
References

1. Sun, D. and J. Xu, "Rectangular waveguide coupler with adjustable coupling coefficient using gap waveguide technology," Electronics Letters, Vol. 53, No. 3, 167-169, 2017.
doi:10.1049/el.2016.4039

2. Tan, B. K. and Y. G. Planar, "Microstrip coupler with enhanced power coupling," Electronics Letters, Vol. 53, No. 1, 34-36, 2016.
doi:10.1049/el.2016.3566

3. Sharma, R. Y., T. Chakravarty, S. Bhooshan, et al. "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, No. 65, 261-273, 2006.
doi:10.2528/PIER06100502

4. Reck, T. J., C. Jung-Kubiak, J. Gill, et al. "Measurement of silicon micromachined waveguide components at 500-750 GHz," IEEE Transactions on Terahertz Science & Technology, Vol. 4, No. 1, 33-38, 2017.
doi:10.1109/TTHZ.2013.2282534

5. Fang, Y. and X. Yan, "Design of waveguide narrow-wall 3 dB coupler for 3 mm-wave frequency band," 2012 5th Global Symposium on Millimeter Waves (GSMM), 166-169, IEEE, 2012.
doi:10.1109/GSMM.2012.6314027

6. Kuroiwa, K., A. Gonzalez, M. Koyano, et al. "Short-slot hybrid coupler using linear taper in W-band," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 34, No. 12, 815-823, 2013.
doi:10.1007/s10762-013-0030-3

7. Castellano, T., O. Losito, L. Mescia, et al. "Feasibility investigation of low cost substrate integrated waveguide (SIW) directional couplers," Progress In Electromagnetics Research, Vol. 59, No. 59, 31-44, 2014.
doi:10.2528/PIERB14010806

8. Liu, S., J. Hu, Y. Zhang, et al. "Sub-millimeter-wave 10 dB directional coupler based on micromachining technique," International Journal of Antennas and Propagation, Vol. 10, No. 5, 1-9, 2015.

9. Kang, X., P. Chen, X. Deng, Z. Chen, J. Jiang, L. Miao, and B. Cheng, "Design method about 0.14 THz power divider based on 3 dB directional coupler," Inf. Las. Engineer, Vol. 43, No. 9, 2907-2911, 2014.

10. Hildebrand, L. T., "Results for a simple compact narrow-wall directional coupler," IEEE Microwave & Guided Wave Letters, Vol. 10, No. 6, 231-232, 2000.
doi:10.1109/75.852425