Vol. 77
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-07-31
Printed Frequency Scanning Antenna Array with Wide Scanning Angle Range
By
Progress In Electromagnetics Research Letters, Vol. 77, 117-122, 2018
Abstract
Leaky-wave radiations are usually generated by leaking the electromagnetic energy gradually over a structure. By using the coupling effect and leaky-wave properties, this paper designs a novel 1-D frequency scanning antenna array. The antenna is intended for the direct imaging radar sensors. The simulated results show that the scanning angle can stay in the range from -60˚ to 30˚. The proposed 1-D antenna array was manufactured, and the measured results are consistent with the simulated ones.
Citation
Liaori Jidi, Xiang-Yu Cao, Xuewen Zhu, and Bowen Zhu, "Printed Frequency Scanning Antenna Array with Wide Scanning Angle Range," Progress In Electromagnetics Research Letters, Vol. 77, 117-122, 2018.
doi:10.2528/PIERL18032605
References

1. Cameron, T. R. and G. V. Eleftheriades, "Experimental validation of a wideband metasurface for wide-angle scanning leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 10, 5245, 2017, ISSN: 0018-926X, doi: 10.1109/TAP.2017.2735454.
doi:10.1109/TAP.2017.2735454

2. Kong, G. S, H. F. Ma, B. G. Cai, and T. J. Cui, "Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide," Scientific Reports, Vol. 6, No. 29600, 1, 2016, doi: 10.1038/srep29600.

3. Xu, J. J., H. C. Zhang, Q. Zhang, and T. J. Cui, "Efficient conversion of surface-plasmon-like modes to spatial radiated modes," Appl. Phys. Lett., Vol. 106, No. 021102, 1, 2015, doi: org/10.1063/1.4905580.

4. Guan, D. F., P. You, Q. F. Zhang, Z. H. Lu, S. W. Yong, and K. Xiao, "A wide-angle and circularly polarized beam-scanning antenna based on microstrip spoof surface plasmon polariton transmission line," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2538, 2017, ISSN: 1536-1225, doi: 10.1109/LAWP.2017.2731877.
doi:10.1109/LAWP.2017.2731877

5. Yang, G. W., J. Y. Li, S. G. Zhou, and Y. X. Qi, "A wide-angle e-plane scanning linear array antenna with wide beam elements," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2923, 2017, ISSN: 1536-1225, doi: 10.1109/LAWP.2017.2752713.
doi:10.1109/LAWP.2017.2752713

6. Liu, X. B., B. Chen, J. S. Zhang, W. Li, J. Chen, A. X. Zhang, and H. Y. Shi, "Frequency-scanning planar antenna based on spoof surface plasmon polariton," IEEE Antennas Wireless Propag. Lett., Vol. 16, 165, 2017, ISSN: 1536-1225, doi: 10.1109/LAWP.2016.2565603.
doi:10.1109/LAWP.2016.2565603

7. Yin, J. Y., J. Ren, Q. Zhang, et al. "Frequency-controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 5181, 2016, ISSN: 0018-926X, doi: 10.1109/TAP.2016.2623663.
doi:10.1109/TAP.2016.2623663

8. Wang, J. F., S. B. Qu, H. Ma, et al. "High-efficiency spoof plasmonpolariton coupler mediated by gradient metasurfaces," Appl. Phys. Lett., Vol. 101, No. 201104, 1, 2012, doi: org/10.1063/1.4767219.

9. Cui, L., W. Wu, and D. G. Fang, "Printed frequency beam-scanning antenna with flat gain and low side lobe levels," IEEE Antennas Wireless Propag. Lett., Vol. 12, 292, 2013, ISSN: 1536-1225, doi: 10.1109/LAWP.2013.2248696.
doi:10.1109/LAWP.2013.2248696

10. Boskovic, N., B. Jokanovic, and M. Radovanovic, "Printed frequency scanning antenna arrays with enhanced frequency sensitivity and sidelobe suppression," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1757, 2017, ISSN: 0018-926X, doi: 10.1109/TAP.2017.2670528.
doi:10.1109/TAP.2017.2670528

11. Sun, S. L., K. Y. Yang, C. M. Wang, et al. "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters, Vol. 12, 6223, 2012, doi:org/10.1021/nl3032668.
doi:10.1021/nl3032668

12. Zheng, Q. Q., Y. F. Li, J. Q. Zhang, et al. "Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase," Scientific Reports, Vol. 7, No. 43543, 1, 2017, doi: 10.1038/srep43543.

13. Lianinejad, A., Z. N. Chen, and C. W. Qiu, "A single-layered spoof-plasmon-mode leaky wave antenna with consistent gain," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 681, 2017, ISSN: 0018-926X, doi: 10.1109/TAP.2016.2633161.
doi:10.1109/TAP.2016.2633161

14. Shen, X. P., T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, "Conformal surface plasmons propagating on ultrathin and flexible films," Pans, Vol. 110, No. 1, 40, 2013, doi:10.1073/pnas.1210417110.
doi:10.1073/pnas.1210417110

15. Darvazehban, A., Q. Manoochehri, et al. "Ultra-wideband scanning antenna array with Rotman lens," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 9, 3435, 2017, ISSN:0018-9480, doi:10.1109/TMTT.2017.2666810.
doi:10.1109/TMTT.2017.2666810

16. Katyal, A. and A. Basu, "Compact and broadband stacked microstrip patch antenna for target scanning applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 381, 2017, ISSN:1536-1225, doi:10.1109/LAWP.2016.2578723.
doi:10.1109/LAWP.2016.2578723

17. Prasad, C. S. and A. Biswas, "Dielectric image line-based leaky-wave antenna for wide range of beam scanning through broadside," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4311, 2017, ISSN:0018-926X, doi:10.1109/TAP.2017.2714024.
doi:10.1109/TAP.2017.2714024

18. Cao, W. Q., Z. N. Chen, W. Hong, et al. "A beam scanning leaky-wave slot antenna with enhanced scanning angle range and flat gain characteristic using composite phase-shifting transmission line," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5871, 2014, ISSN:0018-926X, doi:10.1109/TAP.2014.2350512.
doi:10.1109/TAP.2014.2350512

19. Baumeier, B., T. A. Leskova, and A. A. Maradudin, "Cloaking from surface plasmonpolaritons by a circular array of point scatterers," Physical Review Letters, Vol. 103, No. 246803, 2009, doi:10.1103/PhysRevLett.103.246803.