Vol. 68
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-14
A Plasmonic Monopole Antenna Array on Flexible Photovoltaic Panels for Further Use of the Green Energy Harvesting
By
Progress In Electromagnetics Research M, Vol. 68, 143-152, 2018
Abstract
Due to urgent needs for exploring new energy resources, a novel approach is developed in this paper to integrate the functions of a photovoltaic (PV) panel with an ultra-wide band (UWB) antenna array as a unit for collecting solar energy and RF radiation power. The UWB antenna is printed on the front panel of the PV surface. The antenna structure is customized with minimum shadowing effects on the PV surface, by using eight monopoles connected to one SMA port as a single antenna array. Then, to ensure the bandwidth enhancement, each monopole is coupled to three Split Ring Resonators (SRR) structured in a single column as a matching circuit. Next, an experimental study is performed to investigate the amount of the harvested energy from both the PV and the antenna array. The antenna experimental measurements are conducted to realize the I-V characteristics for the PV and produced output voltage and efficiency from the RF radiation power at 900 MHz only. Numerically, the proposed antenna array performance is simulated by CST MWS and HFSS software packages. Finally, the antenna performance in terms of S11 and the radiation pattern at 900 MHz are measured and compared to the simulated results to end up with excellent agreements.
Citation
Yasir Al-Adhami, and Ergun Erçelebi, "A Plasmonic Monopole Antenna Array on Flexible Photovoltaic Panels for Further Use of the Green Energy Harvesting," Progress In Electromagnetics Research M, Vol. 68, 143-152, 2018.
doi:10.2528/PIERM18032104
References

1. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics and photonics with topological insulators," APL Materials, Vol. 5, No. 035504, Jun. 2017.

2. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, No. 10927, May 2014.

3. Politano, A., A. Cupolillo, G. D. Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," J. Phys.: Condens. Matter, Vol. 28, No. 363003, Aug. 2016.

4. Politano, A., G. D. Profioc, V. Sannad, and E. Curcioe, "Overcoming the temperature polarization in membrane distillation by thermoplasmonic effects activated in Ag nanofillers in polymeric membranes," Desalination, Vol. 60, Oct. 2018.

5. Politano, A., P. Argurio, G. D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Adv. Mater., Vol. 29, No. 1603504, Jan. 2016.

6. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Sci. Rep., Vol. 6, No. 20474, Nov. 2016.

7. Viti, L., D. Coquillat, A. Politano, K. Kokh, Z. Aliev, M. Babanly, O. E. Tereshchenko, W. Knap, E. Chulkov, and M. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, No. 80, Dec. 2015.

8. Elwi, T. A., H. M. Al-Rizzo, N. Bouaynaya, M. M. Hammood, and Y. Al-Naiemy, "Theory of gain enhancement of UC-PBG antenna structures without invoking Maxwell’s equations: An array signal processing approach," Progress In Electromagnetics Research B, Vol. 34, 15-30, DOI 10.1007/s11277-017-4950-4, Sep. 2011.

9. Elwi, T. A., "A miniaturized folded antenna array for MIMO applications," Wireless Personal Communications, 1-13, 2017.

10. Brunelli, D., L. Benini, C. Moser, and L. Thiele, "An efficient solar energy harvester for wireless sensor nodes," 2008 Design, Automation and Test in Europe Conference, 104-109, Nov. 2008.

11. Abdin, Z., M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, and S. Mekhilef, "Solar energy harvesting with the application of nanotechnology," Renew Sustain Energy Rev., Vol. 26, 837-852, Oct. 2011.

12. Ackermann, T. and L. Sqder, "Wind energy technology and current status: A review," Renew Sustain Energy Rev., Vol. 4, 315-374, May 2000.
doi:10.1016/S1364-0321(00)00004-6

13. Joselin Herbert, G. M., S. Iniyan, E. Sreevalsan, and S. Rajapandian, "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Vol. 11, 1117-1145, Aug. 2007.
doi:10.1016/j.rser.2005.08.004

14. Sahin, A. D., "Progress and recent trends in wind energy," Prog. Energy Combust Scivol., Vol. 30, 501-543, Oct. 2013.

15. Lu, X. and S.-H. Yang, "Thermal energy harvesting for WSNs," 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), 3045-3052, Mar. 2011.

16. Dalola, S., V. Ferrari, and D. Marioli, "Pyroelectric effect in PZT thick films for thermal energy harvesting in low-power sensors," Procedia Engvol., Vol. 5, 685-688, Dec. 2012.

17. Al-Adhami, Y. and E. Eçeleb, "Plasmonic metamaterial dipole antenna array circuitry based on flexible solar cell panel for self-powered wireless system," Microwave and Optical Technology Letters, Vol. 59, No. 9, 2365-2371, Sep. 2017.
doi:10.1002/mop.30747

18. Elwi, T. A., "Electromagnetic band gap structures based an ultra wideband microstrip antenna," Microwave and Optical Technology Letters, Vol. 59, No. 4, 827-834, Feb. 2017.
doi:10.1002/mop.30397

19. Elwi, T. A., "A miniaturized folded antenna array for MIMO applications," Wireless Personal Communications, 1-13, DOI 10.1007/s11277-017-4950-4, Sep. 2017.

20. Computer Simulation Technology, Microwave Studio (CST MWS), https://www.cst.com, 2014.

21. Azeez, A. R., T. A. Elwi, and Z. A. Abed AL-Hussain, "Design and analysis of a novel concentric rings based crossed lines single negative metamaterial structure," Engineering Science and Technology, An International Journal, Vol. 20, No. 3, 1140-1146, Nov. 2016.
doi:10.1016/j.jestch.2016.11.010

22. Elwi, T. A., "A further investigation on the performance of the broadside coupled rectangular split ring resonators," Progress In Electromagnetics Research Letters, Vol. 34, 1-8, 2012.
doi:10.2528/PIERL12070409

23. Ansoft’s High Frequency Structure Simulator HFSS, 2014, Available: http://www.ansoft.com.

24. Ali, E. M., N. Z. Yahaya, N. Perumal, and M. Azman, "A novel rectifying circuit for microwave power harvesting system," International Journal of RF and Microwave Computer-Aided Engineering, Jan. 2017.

25. Almoneef, T. S., F. Erkmen, and O. M. Ramahi, "Harvesting the energy of multipolarized electromagnetic waves," Nature Scientific Reports, DOI:10.1038/s41598-017-15298-5, Nov. 2017.