Vol. 68
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-25
Average Intensity of Partially Coherent Lorentz Beams in Oceanic Turbulence
By
Progress In Electromagnetics Research M, Vol. 68, 181-191, 2018
Abstract
Partially coherent Lorentz beams have been introduced to describe the output of the diode laser, which have been investigated due to the special spreading properties. The analytical expressions of partially coherent Lorentz beam propagating in oceanic turbulence are derived. Using the derived equations, the average intensity distributions of partially coherent Lorentz beam are analyzed and discussed. It is shown that the partially coherent Lorentz beam with smaller coherence length will evolve into the Gaussian-like beam faster, and the beam propagation in oceanic turbulence will spread faster with increasing strength of oceanic turbulence. The results have potential application in underwater optical communications and sensing.
Citation
Dajun Liu, and Yaochuan Wang, "Average Intensity of Partially Coherent Lorentz Beams in Oceanic Turbulence," Progress In Electromagnetics Research M, Vol. 68, 181-191, 2018.
doi:10.2528/PIERM18032003
References

1. El Gawhary, O. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," Journal of Optics A: Pure and Applied Optics, Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007

2. Zhao, C. and Y. Cai, "Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis," J. Mod. Optics, Vol. 57, 375-384, 2010.
doi:10.1080/09500341003640079

3. Ni, Y. Z. and G. Q. Zhou, "Nonparaxial propagation of Lorentz-Gauss vortex beams in uniaxial crystals orthogonal to the optical axis," Appl. Phys. B: Lasers O, Vol. 108, 883-890, 2012.
doi:10.1007/s00340-012-5118-2

4. Zhou, G. Q., "Characteristics of paraxial propagation of a super Lorentz-Gauss SLG(01) mode in uniaxial crystal orthogonal to the optical axis," Chinese Phys. B, Vol. 21, 054104, 2012.
doi:10.1088/1674-1056/21/5/054104

5. Liu, D., H. Yin, G. Wang, and Y. Wang, "Propagation properties of a partially coherent Lorentz beam in uniaxial crystal orthogonal to the optical axis," Journal of the Optical Society of America A, Vol. 34, 953-960, 2017.
doi:10.1364/JOSAA.34.000953

6. Zhou, G. Q., "Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system," Opt. Express, Vol. 18, 4637-4643, 2010.
doi:10.1364/OE.18.004637

7. Zhou, G., "Average intensity and spreading of super Lorentz-Gauss modes in turbulent atmosphere," Appl. Phys. B: Lasers O, Vol. 101, 371-379, 2010.
doi:10.1007/s00340-010-3974-1

8. Zhou, G. and X. Chu, "M(2)-factor of a partially coherent Lorentz-Gauss beam in a turbulent atmosphere," Appl. Phys. B: Lasers O, Vol. 100, 909-915, 2010.
doi:10.1007/s00340-010-4046-2

9. Zhou, P., X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, "Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere," J. Opt.-Uk, Vol. 12, 015409, 2010.
doi:10.1088/2040-8978/12/1/015409

10. Zhou, G. Q., "Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere," Opt. Express, Vol. 19, 24699-24711, 2011.
doi:10.1364/OE.19.024699

11. Zhao, C. L. and Y. J. Cai, "Propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere," J. Mod. Optics, Vol. 58, 810-818, 2011.
doi:10.1080/09500340.2011.573591

12. Liu, D., H. Yin, G. Wang, and Y. Wang, "Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence," Appl. Optics, Vol. 56, 8785-8792, 2017.
doi:10.1364/AO.56.008785

13. Liu, D., G. Wang, and Y. Wang, "Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence," Optics & Laser Technology, Vol. 98, 309-317, 2018.
doi:10.1016/j.optlastec.2017.08.011

14. Liu, D., Y. Wang, G. Wang, and H. Yin, "Influences of oceanic turbulence on Lorentz Gaussian beam," Optik - International Journal for Light and Electron Optics, Vol. 154, 738-747, 2018.
doi:10.1016/j.ijleo.2017.10.113

15. Zhou, G. Q., "Nonparaxial propagation of a super-Lorentz-Gauss SLG(01) mode beam," Chinese Phys. B, Vol. 19, 2010.

16. Zhou, G., "Propagation of vectorial Lorentz beam beyond the paraxial approximation," J. Mod. Optics, Vol. 55, 3573-3579, 2008.
doi:10.1080/09500340802346078

17. Yu, H., L. L. Xiong, and B. D. Lu, "Nonparaxial Lorentz and Lorentz-Gauss beams," Optik, Vol. 121, 1455-1461, 2010.
doi:10.1016/j.ijleo.2009.02.005

18. Baykal, Y., "Scintillation index in strong oceanic turbulence," Opt. Commun., Vol. 375, 15-18, 2016.
doi:10.1016/j.optcom.2016.05.002

19. Baykal, Y., "Fourth-order mutual coherence function in oceanic turbulence," Appl. Optics, Vol. 55, 2976-2979, 2016.
doi:10.1364/AO.55.002976

20. Zhou, Y., Q. Chen, and D. M. Zhao, "Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence," Appl. Phys. B: Lasers O, Vol. 114, 475-482, 2014.
doi:10.1007/s00340-013-5545-8

21. Liu, D. J., Y. C. Wang, and H. M. Yin, "Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence," Appl. Optics, Vol. 54, 10510-10516, 2015.
doi:10.1364/AO.54.010510

22. Yang, T., X. L. Ji, and X. Q. Li, "Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence," Acta Phys. Sin.-Ch. Ed., Vol. 64, 204206, 2015.

23. Huang, Y. P., B. Zhang, Z. H. Gao, G. P. Zhao, and Z. C. Duan, "Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence," Opt. Express, Vol. 22, 17723-17734, 2014.
doi:10.1364/OE.22.017723

24. Xu, J. and D. M. Zhao, "Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence," Opt. Laser Technol., Vol. 57, 189-193, 2014.
doi:10.1016/j.optlastec.2013.10.019

25. Liu, D. J., L. Chen, Y. C. Wang, G. Q. Wang, and H. M. Yin, "Average intensity properties of flat-topped vortex hollow beam propagating through oceanic turbulence," Optik, Vol. 127, 6961-6969, 2016.
doi:10.1016/j.ijleo.2016.04.142

26. Huang, Y. P., P. Huang, F. H. Wang, G. P. Zhao, and A. P. Zeng, "The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams," Opt. Commun., Vol. 336, 146-152, 2015.
doi:10.1016/j.optcom.2014.09.055

27. Liu, D., Y. Wang, G. Wang, X. Luo, and H. Yin, "Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence," Laser Phys., Vol. 27, 016001, 2017.
doi:10.1088/1555-6611/27/1/016001

28. Lu, L., Z. Q. Wang, J. H. Zhang, P. F. Zhang, C. H. Qiao, C. Y. Fan, and X. L. Ji, "Average intensity of M×N Gaussian array beams in oceanic turbulence," Appl. Optics, Vol. 54, 7500-7507, 2015.
doi:10.1364/AO.54.007500

29. Tang, M. M. and D. M. Zhao, "Regions of spreading of Gaussian array beams propagating through oceanic turbulence," Appl. Optics, Vol. 54, 3407-3411, 2015.
doi:10.1364/AO.54.003407

30. Lu, L., P. F. Zhang, C. Y. Fan, and C. H. Qiao, "Influence of oceanic turbulence on propagation of a radial Gaussian beam array," Opt. Express, Vol. 23, 2827-2836, 2015.
doi:10.1364/OE.23.002827

31. Dong, Y. M., L. N. Guo, C. H. Liang, F. Wang, and Y. J. Cai, "Statistical properties of a partially coherent cylindrical vector beam in oceanic turbulence," J. Opt. Soc. Am. A, Vol. 32, 894-901, 2015.
doi:10.1364/JOSAA.32.000894

32. Liu, D. J., Y. C. Wang, G. Q. Wang, H. M. Yin, and J. R. Wang, "The influence of oceanic turbulence on the spectral properties of chirped Gaussian pulsed beam," Opt. Laser Technol., Vol. 82, 76-81, 2016.
doi:10.1016/j.optlastec.2016.02.019

33. Liu, D. J. and Y. C. Wang, "Average intensity of a Lorentz beam in oceanic turbulence," Optik - International Journal for Light and Electron Optics, Vol. 144, 76-85, 2017.
doi:10.1016/j.ijleo.2017.06.078

34. Liu, D., Y. Wang, X. Luo, G. Wang, and H. Yin, "Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence," J. Mod. Optics, Vol. 64, 1579-1587, 2017.
doi:10.1080/09500340.2017.1300698

35. Schmidt, P., "A method for the convolution of lineshapes which involve the Lorentz distribution," Journal of Physics B, Vol. 9, 2331-2339, 1976.
doi:10.1088/0022-3700/9/13/018

36. Jeffrey, H. D. A., Handbook of Mathematical Formulas and Integrals, 4th Ed., Academic Press Inc., 2008.