Vol. 76
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-06-04
Planar Cavity-Backed Self-Diplexing Antenna Using Two-Layered Structure
By
Progress In Electromagnetics Research Letters, Vol. 76, 91-96, 2018
Abstract
A design of a half-mode substrate integrated waveguide (HMSIW) cavity-backed self-diplexing antenna is proposed with a two-layer structure. The top layer comprises two HMSIW based cavities, and radiating patches are etched on the top-cladding of each cavity. The radiating patches are excited by two distinct printed microstrip lines on the backside of the bottom layer by using shorting-pins. The shorting-pin excites the corresponding cavity in its dominant mode, which resonates at two different frequencies in X-band. The simulated results demonstrate that the proposed design resonates at 8.20 GHz and 10.55 GHz with an isolation of higher than -25 dB between two excitations, which helps to introduce the self-diplexing phenomenon. Also, both resonant frequencies can be tuned independently by varying the dimensions of the corresponding cavity. Moreover, HMSIW cavity-backed structure and proposed feeding technique reduce the overall size of the antenna significantly, while it maintains high gain and unidirectional radiation characteristics for both operating frequencies.
Citation
Arvind Kumar, and Singaravelu Raghavan, "Planar Cavity-Backed Self-Diplexing Antenna Using Two-Layered Structure," Progress In Electromagnetics Research Letters, Vol. 76, 91-96, 2018.
doi:10.2528/PIERL18031605
References

1. Lu, Y. and Y. Lin, "A mode based design method for dual-band and self-diplexing antennas using double T-stubs loaded aperture," IEEE Trans. Antennas Propag., Vol. 60, 5596-5603, 2012.
doi:10.1109/TAP.2012.2211852

2. Chaturvedi, D. and S. Raghavan, "Compact QMSIW based antennas for WLAN/Wban applications," Progress In Electromagnetics Research, Vol. 82, 145-153, 2018.
doi:10.2528/PIERC18012003

3. Kumar, A. and S. Raghavan, "Wideband slotted substrate integrated waveguide cavity-backed antenna for Ku–band application," Microw. Opt. Technol. Lett., Vol. 59, 1613-1619, 2017.
doi:10.1002/mop.30594

4. Luo, G. Q., Z. F. Hu, Y. Liang, L. Y. Yu, and L. L. Sun, "Development of low profile cavity backed crossed slot antenna for planar integration," IEEE Trans. Antennas Propag., Vol. 57, 2972-2979, 2009.
doi:10.1109/TAP.2009.2028602

5. Zhang, T., W. Hong, , Y. Zhang, and K. Wu, "Design and analysis of SIW cavity backed dual-band antennas with a dual-mode triangular-ring slot," IEEE Tran. Antennas Propag., Vol. 62, 5007-5016, 2014.
doi:10.1109/TAP.2014.2345581

6. Kumar, A. and S. Raghavan, "A self-triplexing SIW cavity-backed slot antenna," IEEE Antennas and Wireless Propagation Letters, 2018, DOI:10.1109/LAWP.2018.2815665.

7. Sam, S. and S. Lim, "Electrically small complementary split-ring resonator antenna on eighth-mode substrate integrated waveguide," Electron Lett., Vol. 49, 519-521, 2013.
doi:10.1049/el.2012.4291

8. Kumar, A. and S. Raghavan, "Broadband dual-circularly polarised SIW cavity antenna using a stacked structure," IET Electronics Letters, Vol. 53, No. 17, 1171-1172, 2017.
doi:10.1049/el.2017.2407