Vol. 69
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-29
Would the Human Brain Be Able to Erect Specific Effects Due to the Magnetic Field Component of an UHF Field via Magnetite Nanoparticles?
By
Progress In Electromagnetics Research M, Vol. 69, 23-36, 2018
Abstract
In 2016 a study reported observing a concentration of magnetite nanocrystals in human brains, with four orders of magnitude larger than previously thought. In the context of magnetite's role and function inside the human brain not being properly understood, this development prompts a question concerning the impact that a significant magnetic near-field component, in the hundreds of MHz range, might have on power loss in tissues having ferrimagnetic properties. This article highlights the importance of thorough research on possible thermal and non-thermal effects that could be caused by the magnetic field component to which one could be exposed while using certain communication devices near or in front of the head. Furthermore, this article provides preliminary estimations of magnetic contribution to the specific absorption rate (SAR) of energy deposition in tissues, using two approaches - one based on existing research concerning magnetic hyperthermia, and the other one based on a simulation model that takes into account the magnetic properties of tissues. By simulating the propagation of a 440 MHz wave in a ``magnetic'' (as opposed to pure dielectric) brain, we observed changes of the SAR values, and, more importantly, superficial hot spots appeared at the surface of small magnetite particles, distributed in the homogenous brain.
Citation
Simona Miclaus, Cora Iftode, and Antoniu Miclaus, "Would the Human Brain Be Able to Erect Specific Effects Due to the Magnetic Field Component of an UHF Field via Magnetite Nanoparticles?," Progress In Electromagnetics Research M, Vol. 69, 23-36, 2018.
doi:10.2528/PIERM18030806
References

1. International Commission on Non-Ionizing Radiation Protection (ICNIRP) "Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fi elds," Health Physics, Vol. 74, 494-522, 1998.

2. Rubtsova, N., S. Perov, O. Belaya, et al. "Near- eld radiofrequency electromagnetic exposure assessment," Electromagnetic Biology and Medicine, Vol. 34, No. 3, 180-182, 2015.
doi:10.3109/15368378.2015.1076444

3. Maher, B. A., I. A. M. Ahmed, V. Karloukovski, et al. "Magnetite pollution nanoparticles in the human brain," Proc. Natl. Acad. Sci. USA, Vol. 113, No. 39, 10797-10801, 2016.
doi:10.1073/pnas.1605941113

4. Kirschvink, J. L., A. Kobayashi-Kirschvink, and B. J. Woodford, "Magnetite biomineralization in the human brain," Proc. Natl. Acad. Sci. USA, Vol. 89, No. 16, 7683-7687, 2009.
doi:10.1073/pnas.89.16.7683

5. Kirschvink, J. L., "Microwave absorption by magnetite: A possible mechanism for coupling nonthermal levels of radiation to biological systems," Bioelectromagnetics, Vol. 17, No. 3, 187-194, 1996.
doi:10.1002/(SICI)1521-186X(1996)17:3<187::AID-BEM4>3.0.CO;2-#

6. Strbak, O., P. Kopcansky, and I. Frollo, "Biogenic magnetite in humans and new magnetic resonance hazard questions," Meas. Sci. Rev., Vol. 11, No. 3, 85-91, 2011.
doi:10.2478/v10048-011-0014-1

7. Ueno, S., "Studies on magnetism and bioelectromagnetics for 45 years: From magnetic analog memory to human brain stimulation and imaging," Bioelectromagnetics, Vol. 33, 3-22, 2012.
doi:10.1002/bem.20714

8. Chen, L., C. Chen, P. Wang, et al. "Mechanisms of cellular effects directly induced by magnetic nanoparticles under magnetic fields," Hindawi. J. Nanomat., Vol. 2017, ID 1564634, 2017.

9. Binhi, V. N. and F. S. Prato, "A physical mechanism of magnetoreception: Extension and analysis," Bioelectromagnetics, Vol. 38, 41-52, 2017.
doi:10.1002/bem.22011

10. Hergt, R., S. Dutz, R. Muller, et al. "Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy," J. Phys.: Cond. Matt., Vol. 18, S2919-S2934, 2006.
doi:10.1088/0953-8984/18/38/S26

11. Blaney, L., "Magnetite (Fe3O4): Properties, synthesis, and applications," Lehigh Review, Preserve 15, paper 5, Lehigh University, 2007.

12. Strbak, O., P. Kopcansky, M. Timko, et al. "Single biogenic magnetite nanoparticle physical characteristics | A biological impact study (for MagMeet 2012 participants)," IEEE Trans. Mag., Vol. 49, 457-462, 2013.
doi:10.1109/TMAG.2012.2223201

13. Giere, R., "Magnetite in the human body: Biogenic vs. anthropogenic," Proc. Natl. Acad. Sci. USA, Vol. 113, No. 43, 11986-11987, 2016.
doi:10.1073/pnas.1613349113

14. Gorobets, O., S. Gorobets, and M. Koralewski, "Physiological origin of biogenic magnetic nanoparticles in health and disease: From bacteria to humans," Int. J. Nanomed., Vol. 12, 4371-4395, 2017.
doi:10.2147/IJN.S130565

15. Cespedes, O. and S. Ueno, "Effects of radio frequency magnetic elds on iron release from cage proteins," Bioelectromagnetics, Vol. 30, 336-342, 2009.
doi:10.1002/bem.20488

16. Carrubba, S., C. Frilot, A. L. Chesson, Jr., et al. "Evidence of a nonlinear human magnetic sense," Neurosci., Vol. 144, 356-367, 2007.
doi:10.1016/j.neuroscience.2006.08.068

17. Carrubba, S., C. Frilot, A. L. Chesson, Jr., et al. "Numerical analysis of recurrence plots to detect effect of environmental-strength magnetic elds on human brain electrical activity," Med. Eng. Phys., Vol. 32, No. 8, 898-907, 2010.
doi:10.1016/j.medengphy.2010.06.006

18. Hinrikus, H., M. Bachmann, J. Laas, et al. "Effect of 7, 14 and 21 Hz modulated 450MHz microwave radiation on human electroencephalographic rhythms," Int. J. Rad. Biol., Vol. 84, No. 1, 69-79, 2008.
doi:10.1080/09553000701691679

19. Suhhova, A., M. Bachmann, D. Karai, et al. "Effect of microwave radiation on human EEG at two different levels of exposure," Bioelectromagnetics, Vol. 34, 264-274, 2013.
doi:10.1002/bem.21772

20. Hinrikus, H., M. Bachmann, D. Karai, et al. "Mechanism of low-level microwave radiation effect on nervous system," Electromag. Biol. Med., Vol. 36, No. 2, 202-212, 2017.
doi:10.1080/15368378.2016.1251451

21. Miclaus, S., M. Racuciu, and P. Bechet, "H- eld contribution to the electromagnetic energy deposition in tissues similar to the brain but containing ferrimagnetic particles, during use of face-held radio transceivers," Progress In Electromagnetics Research B, Vol. 73, 49-60, 2017.
doi:10.2528/PIERB17010101

22. Schmid, M. R., M. Murbach, C. Lustenberger, et al. "Sleep EEG alterations: Effects of pulsed magnetic elds versus pulse-modulated radio frequency electromagnetic fields," J. Sleep. Res., Vol. 21, No. 6, 620-629, 2012.
doi:10.1111/j.1365-2869.2012.01025.x

23. Busquets, M. A., A. Espargaro, R. Sabate, et al. "Magnetic nanoparticles cross the blood-brain barrier: When physics rises to a challenge," Nanomat., Vol. 5, 2231-2248, 2015.
doi:10.3390/nano5042231

24. Nittby, H., A. Brun, S. Stromblad, et al. "Nonthermal GSM RF and ELF EMF effects upon rat BBB permeability," Environmentalist, Vol. 31, No. 2, 140-148, 2011.
doi:10.1007/s10669-011-9307-z

25. Salford, L. G., H. Nittby, and B. R. R. Persson, "Effects of electromagnetic elds from wire- less communication upon the blood-brain barrier," Bioinitiative 2012: A Rationale for Biologically-Based Exposure Standards for Low-Intensity Electromagnetic Radiation (Section 10), Sage, C. and Carpenter, D. O. (eds.), Available from: http://www.bioinitiative.org/ report/wp-content/uploads/pdfs/sec10 2012 Effects Electromagnetic Fields Wireless Communication.pdf, 2012.

26. Deatsch, E. A. and B. A. Evans, "Heating efficiency in magnetic nanoparticle hyperthermia," J. Mag. Mag. Mat., Vol. 354, 163-172, 2014.
doi:10.1016/j.jmmm.2013.11.006

27. Ma, M., Y. Wu, J. Zhou, et al. "Size dependence of speci c power absorption of Fe3O4 particles in AC magnetic eld," J. Mag. Mag. Mat., Vol. 268, 33-39, 2004.
doi:10.1016/S0304-8853(03)00426-8

28. Jazirehpour, M. and S. A. Seyyed Ebrahimi, "Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles," J. Alloys Comp., Vol. 638, 188-196, 2015.
doi:10.1016/j.jallcom.2015.03.021

29. Khurshid, H., J. Alonso, Z. Nemati, et al. "Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles," J. Appl. Phys., Vol. 117, 17A337, 2015.
doi:10.1063/1.4919250

30. Vasilakaki, M., C. Binns, and K. N. Trohidou, "Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: A Monte Carlo study of shape and size effects," Nanoscale, Vol. 7, No. 17, 7753-7762, 2015.
doi:10.1039/C4NR07576E

31. Shubitidze, F., K. Kekalo, R. Stigliano, et al. "Magnetic nanoparticles with high speci c absorption rate of electromagnetic energy at low eld strength for hyperthermia therapy," J. Appl. Phys., Vol. 117, No. 9, 094302, 2015.
doi:10.1063/1.4907915

32. Jazirehpour, M. and S. A. Seyyed Ebrahimi, "Synthesis of magnetite nanostructures with complex morphologies and effect of these morphologies on magnetic and electromagnetic properties," Ceramics Int., Vol. 42, 16512-16520, 2016.
doi:10.1016/j.ceramint.2016.07.067

33. Liu, X., K. Cao, Y. Chen, et al. "Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals," Mat. Chem. Phys., Vol. 192, 339-348, 2017.
doi:10.1016/j.matchemphys.2017.02.012

34. Dolnik, B., M. Rajnak, R. Cimbala, et al. "The response of a magnetic uid to radio frequency electromagnetic eld," Acta Phys. Pol. A, Vol. 131, No. 4, 946-948, 2017.
doi:10.12693/APhysPolA.131.946

35. Marin, C. N., I. Malaescu, and P. C. Fannin, "Theoretical evaluation of the heating rate of ferrofluids," J. Therm. Anal. Calorim., Vol. 119, No. 2, 1199-1203, 2014.
doi:10.1007/s10973-014-4224-2

36. Attar, M. M. and M. Haghpanahi, "Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic eld on three human cancer cell lines in magnetic uid hyperthermia," Electromag. Biol. Medicine, Vol. 35, No. 4, 305-320, 2016.
doi:10.3109/15368378.2015.1089409

37. Skumiel, A., M. Kaczmarek-Klinowska, M. Timko, et al. "Evaluation of power heat losses in multidomain iron particles under the influence of ac magnetic fi eld in RF range," Int. J. Thermophys., Vol. 34, 655-666, 2013.
doi:10.1007/s10765-012-1380-0

38. Fannin, P. C., I. Malaescu, C. N. Marin, et al. "Microwave speci c loss power of magnetic uids subjected to a static magnetic eld," Eur. Phys. J. E, Vol. 27, 145-148, 2008.
doi:10.1140/epje/i2008-10362-y

39. Fannin, P. C., I. Malaescu, C. N. Marin, et al. "Microwave propagation parameters in magnetic fluids," Eur. Phys. J. E, Vol. 29, 299-303, 2009.
doi:10.1140/epje/i2009-10477-7

40. Malaescu, I., C. N. Marin, M. Bunoiu, et al. "The effect of particle concentration on the heating rate of ferrofluids for magnetic hyperthermia," Annals of West University of Timisoara --- Physics, Vol. 58, No. 1, 81-88, 2015.
doi:10.1515/awutp-2015-0210

41. Yun, H., X. Liu, T. Paik, et al. "Size- and composition dependent radio frequency magnetic permeability of iron oxide nanocrystals," American Chem. Soc. Nano, Vol. 8, No. 12, 12323-12337, 2014.