Vol. 65
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-12
Reply to “Comment on 'a Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber'”
By
, Vol. 65, 135-136, 2018
Abstract
Citation
Deepak Sood, and Chandra Charu Tripathi, "Reply to “Comment on 'a Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber'”," , Vol. 65, 135-136, 2018.
doi:10.2528/PIERM18030802
References

1. Tian, D., H. Shi, and A. Zhang, "Comment on `A wideband ultrathin low profile metamaterial microwave absorber'," Microw. Opt. Technol. Lett., Vol. 58, 1773-1774, 2016.
doi:10.1002/mop.29897

2. Yin, S., J. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. Ma, "Comment on `triple-band perfect metamaterial absorption, based on single cut-wire bar'," Appl. Phys. Lett., Vol. 107, 026101, 2015.
doi:10.1063/1.4926930

3. Ghosh, S., S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, "An ultra-wideband ultra-thin metamaterial absorber based on circular split rings," IEEE Antennas Wireless Propaga. Lett., Vol. 14, 1172-1175, 2015.
doi:10.1109/LAWP.2015.2396302

4. Bhattacharyya, S., S. Ghosh, D. Chaurasiya, and K. Srivastava, "Wideangle broadband microwave metamaterial absorber with octave bandwidth," IET Microwaves, Antennas Propag., Vol. 9, 1160-1166, 2015.
doi:10.1049/iet-map.2014.0632

5. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 014909, 2011.
doi:10.1063/1.3608246

6. Sood, D. and C. C. Tripathi, "A wideband ultrathin low profile metamaterial microwave absorber," Microw. Opt. Technol. Lett., Vol. 57, 2723-2728, 2015.
doi:10.1002/mop.29428

7. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

8. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102, 2010.
doi:10.1088/0022-3727/43/22/225102

9. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111, 2009.
doi:10.1063/1.3276072

10. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770

11. Wang, H. B. and Y. J. Cheng, "Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 914-922, Feb. 2014.

12. Kim, J. H., H. J. Chun, I. P. Hong, Y. J. Kim, and Y. B. Park, "Analysis of FSS radomes based on physical optics method and ray tracing technique," IEEE Antennas Wireless Propag. Lett., Vol. 12, 868-871, May 2014.

13. Kundu, D., A. Mohan, and A. Chakraborty, "Reduction of cross-polarized reflection to enhance dual-band absorption," J. Appl. Phys., Vol. 120, 205103, 2016.
doi:10.1063/1.4968569

14. Kundu, D., A. Mohan, and A. Chakraborty, "Comment on `Wide-angle broadband microwave metamaterial absorber with octave bandwidth'," IET Microwaves Antennas Propag., Vol. 11, 442-443, 2017.
doi:10.1049/iet-map.2016.0743