Vol. 67
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-13
Thinning a Subset of Selected Elements for Null Steering Using Binary Genetic Algorithm
By
Progress In Electromagnetics Research M, Vol. 67, 147-155, 2018
Abstract
Generally, the null steering is performed by controlling the amplitude and/or phase weightings of all element excitations or only a small number of them. In such cases, a need for extra RF components such as variable attenuators and variable phase shifters with each element in the array is inevitable. In this paper, an alternative method is introduced where the null steering is performed by thinning (or turning off) only a small subset of the elements in the uniform linear arrays. To find an optimum combination of active (on) and inactive (off) elements, a binary genetic algorithm is used. In large arrays, the number of required nulls is much smaller than the total number of array elements, thus only a small subset of the array elements could be sufficient for producing the required nulls rather than optimizing all the array elements. By this way, a faster convergence speed of the optimizer and lowest peak sidelobe level can be obtained. The effectiveness of the proposed method with various subset configurations will be demonstrated and compared with some standard null steering methods.
Citation
Jafar Ramadhan Mohammed, "Thinning a Subset of Selected Elements for Null Steering Using Binary Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 67, 147-155, 2018.
doi:10.2528/PIERM18021604
References

1. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204

2. Haupt, R. L., "Phase-only adaptive nulling with a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 45, No. 6, 1009-1015, Jun. 1997.
doi:10.1109/8.585749

3. Mohammed, J. R., "Element selection for optimized multi-wide nulls in almost uniformly excited arrays," IEEE Antennas and Wireless Communication Letters Digital Object Identifier, 10.1109/LAWP.2018.2807371, Feb. 2018.

4. Morgan, D., "Partially adaptive array techniques," IEEE Trans. Antennas Propag., Vol. 26, No. 6, 823-833, Nov. 1978.
doi:10.1109/TAP.1978.1141952

5. Mohammed, J. R. and K. H. Sayidmarie, "Performance evaluation of the adaptive sidelobe canceller with various auxiliary configurations," AEÜ International Journal of Electronics and Communications, Vol. 80, 179-185, 2017.
doi:10.1016/j.aeue.2017.06.039

6. Mohammed, J. R., "Optimal null steering method in uniformly excited equally spaced linear array by optimizing two edge elements," Electronics Letters, Vol. 53, No. 13, 835-837, Jun. 2017.
doi:10.1049/el.2017.1405

7. Mohammed, J. R. and K. H. Sayidmarie, "Null steering method by controlling two elements," IET Microw. Antennas Propag., Vol. 8, No. 15, 1348-1355, 2014.
doi:10.1049/iet-map.2014.0213

8. Mayhan, J. T., "Thinned array configurations for use with satellite based adaptive antennas," IEEE Trans. Antennas Propag., Vol. 28, No. 6, 846-856, Nov. 1980.
doi:10.1109/TAP.1980.1142438

9. Rocca, P., R. L. Haupt, and A. Massa, "Interference suppression in uniform linear arrays through a dynamic thinning strategy," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4525-4533, Dec. 2011.
doi:10.1109/TAP.2011.2165506

10. Toso, G., C. Mangenot, and A. G. Roederer, "Sparse and thinned arrays for multiple beam satellite applications," Proc. Eur. Conf. Antennas Propag. (EuCAP 2007), 1-4, Edinburgh, England, Nov. 11–16, 2007.

11. He, J., D.-Z. Feng, and N. H. Younan, "Optimizing thinned antenna array geometry in MIMO radar systems using multiple genetic algorithm," IEEE CIE International Conference on Radar, Chengdu, China, Oct. 24–27, 2011.

12. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, Jul. 1994.
doi:10.1109/8.299602

13. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227

14. Nanbo, J. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, Mar. 2007.
doi:10.1109/TAP.2007.891552

15. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2003.
doi:10.1163/156939304774113089

16. Quevedo-Teruel, O. and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas Wireless Propag. Lett., Vol. 5, No. 1, 349-352, Dec. 2006.
doi:10.1109/LAWP.2006.880693

17. Keizer, W. P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2257-2260, Aug. 2008.
doi:10.1109/TAP.2008.927580

18. Singh, U. and T. S. Kamal, "Optimal synthesis of thinned arrays using biogeography based optimization," Progress In Electromagnetics Research M, Vol. 24, 141-155, 2012.
doi:10.2528/PIERM12020502

19. Donelli, M., A. Martini, and A. Massa, "A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2491-2495, Aug. 2009.
doi:10.1109/TAP.2009.2024570

20. Caorsi, S., A. Lommi, A. Massa, and M. Pastorino, "Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 1116-1121, Apr. 2004.
doi:10.1109/TAP.2004.825689

21. Donelli, M., "Design of broadband metal nanosphere antenna arrays with a hybrid evolutionary algorithm," Optics Letters, Vol. 38, No. 4, 401-403, Feb. 15, 2013.
doi:10.1364/OL.38.000401

22. Febvre, P. and M. Donelli, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.

23. Tseng, F. I., "Design of array and line-source antennas for Taylor patterns with a null," IEEE Trans. Antennas Propagat., Vol. 27, 474-479, Jul. 1979.
doi:10.1109/TAP.1979.1142122

24. Pogorzelski, R. J., "On a simple method of obtaining sidelobe reduction over a wide angular range in one and two dimensions," IEEE Trans. Antennas Propag., Vol. 49, No. 3, 475-482, Mar. 2001.
doi:10.1109/8.918624

25. Sayidmarie, K. H. and J. R. Mohammed, "Performance of a wide angle and wideband nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, Oct. 2013.