Vol. 69
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-26
Spatial Structure of Electromagnetic Field Diffracted by a Sub-Wavelength Slot in a Thick Conducting Screen
By
Progress In Electromagnetics Research M, Vol. 69, 15-22, 2018
Abstract
The eigen-mode technique of rigorous diffraction theory is employed for computation of spatial structure of electromagnetic field, arising under diffraction of a plane wave by a narrow slot of the width of the order of the wavelength or smaller in a perfectly conducting screen of finite thickness. The effects of little step change and of strong enhancement for relative averaged energy density are investigated in dependence of the slot width and depth. It is shown that the field in a space behind the slot represents the sum of a field, slowly and monotonically decreasing in the directions away from a slot, and a harmonic field with sinusoidal spatial inhomogeneities of the order of the wavelength. It is established that the comparative contributions of these two field constituents are unequal for various spatial components of the electric and magnetic fields, and also that the contribution of the first constituent decreases with increase of the slot width.
Citation
Vladimir Serdyuk, Joseph Titovitsky, Svetlana V. Von Gratowski, and Victor V. Koledov, "Spatial Structure of Electromagnetic Field Diffracted by a Sub-Wavelength Slot in a Thick Conducting Screen," Progress In Electromagnetics Research M, Vol. 69, 15-22, 2018.
doi:10.2528/PIERM18021601
References

1. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 12, 667-669, 1998.
doi:10.1038/35570

2. Chen, X., H.-R. Park, N. Lindquist, J. Shaver, M. Pelton, and S.-H. Oh, "Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit," Scienti c Reports, Vol. 4, 6722, 2014.

3. Park, H.-R., X. Chen, N.-C. Nguyen, J. Peraire, and S.-H. Oh, "Nanogap-enhanced terahertz sensing of 1nm thick (λ/106) dielectric lms," ACS Photonics, Vol. 2, No. 3, 417-424, 2015.
doi:10.1021/ph500464j

4. Toma, A., S. Tuccio, M. Prato, F. De Donato, A. Perucchi, P. Di Pietro, S. Marras, C. Liberale, R. P. Zaccaria, F. De Angelis, L. Manna, S. Lupi, E. Di Fabrizio, and L. Razzari, "Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots," Nano Lett., Vol. 15, No. 1, 386-391, 2015.
doi:10.1021/nl503705w

5. Garcia-Vidal, F. J., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, Vol. 82, No. 1, 729-787, 2010.
doi:10.1103/RevModPhys.82.729

6. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1997.

7. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of arbitrary thickness," Technical Physics, Vol. 50, No. 8, 1076-1083, 2005.
doi:10.1134/1.2014542

8. Kong, J. A., Electromagnetic Wave Theory, Wiley, New York, 1986.

9. Meixner, J., "The behavior of electromagnetic elds at edges," IEEE Trans. Antennas and Propagat., Vol. 20, No. 4, 442-446, 1972.
doi:10.1109/TAP.1972.1140243

10. Rudnitsky, A. S. and V. M. Serdyuk, "Integrated evaluation of diffraction image quality in optical lithography using the rigorous diffraction solution for a slot," Technical Physics, Vol. 57, No. 10, 1387-1393, 2012.
doi:10.1134/S1063784212100180