Vol. 67
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-05
Time-Domain Coupling Analysis of Shielded Cable on the Ground Excited by Plane Wave
By
Progress In Electromagnetics Research M, Vol. 67, 45-53, 2018
Abstract
This paper presents an efficient hybrid method consisting of finite-difference time-domain (FDTD) method, transmission line (TL) equations, and a fast calculation method for excitation fields, which can be applied to the coupling analysis of the shielded cable on the ground excited by plane wave rapidly. It can avoid modeling the infinite ground and the structure of the shielded cable directly. In this hybrid method, the shielded cable is decomposed into external and internal transmission line models, and the corresponding TL equations for the external and internal TL models are established necessarily. Then the FDTD method is utilized to solve the TL equations to obtain the transient responses on the shielding layer and core wires of the cable. A numerous examination of the coupling of coaxial cable exhibits that this hybrid method has very high accuracy and efficiency compared with the SPICE method. Finally, the methods of effective shielding protection of the cable have been proposed by analyzing the influences of the grounding states of the shielding layer, the electromagnetic parameters of the ground and the heights of the cable on the transient responses of the cable.
Citation
Zhihong Ye, Cheng Liao, and Chuan Wen, "Time-Domain Coupling Analysis of Shielded Cable on the Ground Excited by Plane Wave," Progress In Electromagnetics Research M, Vol. 67, 45-53, 2018.
doi:10.2528/PIERM18021101
References

1. Liu, Y., B. Ravelo, and A. K. Jastrzebski, "Time-domain magnetic dipole model of PCB near-field emission," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 5, 1561-1569, 2016.
doi:10.1109/TEMC.2016.2578953

2. Rajkumar, E. R., B. Ravelo, M. Bensetti, and P. Fernandez-Lopez, "Application of a hybrid model for the susceptibility of arbitrary shape metallic wires disturbed by EM near-field radiated by electronic structures," Progress In Electromagnetics Research B, Vol. 37, 143-169, 2012.
doi:10.2528/PIERB11110908

3. Ravelo, B. and Y. Liu, "Hybrid modelling of near-field coupling onto grounded wire under ultra-short duration perturbation," IOP Conference Series: Materials Science and Engineering, Vol. 67, No. 012013, 1-4, 2014.

4. Baum, C. E., T. K. Liu, and F. M. Tesche, "On the analysis of general multiconductor transmission line networks," Interaction Note 350, Kirtland AFB, NM, 1978.

5. Agrawal, A. K., et al. "Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, No. 2, 119-129, 1980.
doi:10.1109/TEMC.1980.303824

6. Tesche, F. M. and C. M. Butler, "On the addition of EM field propagation and coupling effects in the BLT equation," Interaction Notes, No. 588, 1-43, 2003.

7. Xu, Q. X. and Y. Z. Xie, "The transient response of discontinuous MTL based on BLT equation," 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), 411-413, 2015.

8. Du, J. K., S. M. Hwang, J. W. Ahn, and J. G. Yook, "Analysis of coupling effects to PCBs inside waveguide using the modified BLT equation and full-wave analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 10, 3514-3523, 2013.
doi:10.1109/TMTT.2013.2277994

9. Paul, C. R., "A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 342-354, 1994.
doi:10.1109/15.328864

10. Erdin, I., A. Dounavis, and R. Achar, "A SPICE model for incident field coupling to lossy multiconductor transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, 485-494, 2001.
doi:10.1109/15.974627

11. Paul, C. R., "A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 342-354, 2009.
doi:10.1109/15.328864

12. Xie, H. Y., J. G. Wang, R. Y. Fan, and Y. N. Liu, "SPICE models to analyze radiated and conducted susceptibilities of shielded coaxial cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 215-222, 2010.
doi:10.1109/TEMC.2009.2036929

13. Xie, H. Y., J. G. Wang, Y. Li, and H. F. Xia, "Efficient evaluation of multiconductor transmission lines with random translation over ground under a plane wave," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1623-1629, 2014.
doi:10.1109/TEMC.2014.2330823

14. Xie, H. Y., Y. Li, H. L. Qiao, and J. G. Wang, "Empirical formula of effective coupling length for transmission lines illuminated by E1 HEMP," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 581-587, 2016.
doi:10.1109/TEMC.2016.2518243

15. Ye, Z. H., X. Z. Xiong, and M. Zhang, "A novel time domain hybrid method for coupling problems of long cables excited by electromagnetic pulses," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 6, 1710-1716, 2016.
doi:10.1109/TEMC.2016.2587904

16. Taflove, K. R., B. B. Umashankar, F. Harfoush, and K. S. Yee, "Detailed FDTD analysis of EM fields penetrating narrow slots and lapped joints in thick conducting screens," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 2, 247-257, 1988.
doi:10.1109/8.1102

17. Chen, J. and J. G. Wang, "A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 2, 354-360, 2007.
doi:10.1109/TEMC.2007.893329

18. Xiong, R., B. Chen, Y. Mao, B. Li, and Q. F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetic Research, Vol. 131, 135-152, 2012.
doi:10.2528/PIER12072201

19. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, 451-455, Wiley, 1997.