Vol. 74
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-27
Radar Cross Section Reduction Using Polarization Cancellation Approach
By
Progress In Electromagnetics Research Letters, Vol. 74, 107-110, 2018
Abstract
A new approach is presented to reduce the monostatic radar cross section (RCS) of a metal surface. In this approach, called Polarization Cancelation, the polarization of incident wave is rotated by several angles so that the reflected wave becomes zero in direction of incidence. The characteristics and mechanism of the polarization rotation and RCS reduction are investigated. The presented approach is verified by simulation and measurement results.
Citation
Mohammad Khalaj-Amirhosseini, and Mostafa Khanjarian, "Radar Cross Section Reduction Using Polarization Cancellation Approach," Progress In Electromagnetics Research Letters, Vol. 74, 107-110, 2018.
doi:10.2528/PIERL18020401
References

1. Poirier, J.-R., H. Aubert, and J. David, "Minimizing electromagnetic scattering by varying height of metallic surfaces," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 299-301, May 2008.
doi:10.1109/LMWC.2008.922101

2. Khalaj-Amirhosseini, M., "Use of dielectric inhomogeneous planar layers as optimum microwave absorbers," IET Proceedings Microwave, Antennas and Propagation, Vol. 4, No. 12, 2228-2233, 2010.
doi:10.1049/iet-map.2010.0014

3. Fu, Y., Y. Li, and N. Yuan, "Wideband composite AMC surfaces for RCS reduction," Microwave and Optical Technology Letters, Vol. 53, No. 4, 712-715, 2011.
doi:10.1002/mop.25835

4. Chen, W., C. A. Balanis, and C. R. Birtcher, "Checkerboard EBG surfaces for wideband radar cross section reduction," IEEE Trans. on Antennas and Propagation, Vol. 63, No. 6, 2636-2645, 2015.
doi:10.1109/TAP.2015.2414440

5. Liu, X., J. Gao, L. Xu, X. Cao, Y. Zhao, and S. Li, "A coding diffuse metasurface for RCS reduction," IEEE Trans. Antennas and Wireless Propagation Letters, Vol. 16, 724-727, 2016.

6. Haung, J. and R. J. Pozorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Trans. on Antennas and Propagation, Vol. 46, No. 5, 650-656, May 1998.
doi:10.1109/8.668907

7. Zhong, X. J., L. Chen, Y. Shi, and X.-W. Shi, "A dual-frequency single layer circularly polarized reflectarray with frequency selective surface backing," Progress In Electromagnetics Research C, Vol. 51, 87-93, 2014.
doi:10.2528/PIERC14040103

8. Tahseen, M. M. and A. A. Kishk, "Ka-band circularly polarized high efficiency wide band reflectarray using cross bow-tie elements," Progress In Electromagnetics Research, Vol. 153, 1-10, 2015.
doi:10.2528/PIER15072305