Vol. 67
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-17
Automated Scaling Region of Interest with Iterative Edge Preserving in Forward-Backward Time-Stepping
By
Progress In Electromagnetics Research M, Vol. 67, 177-188, 2018
Abstract
A one-shot rescaling process, namely Automated Scaling Region of Interest (AS-ROI), is combined with an inversion technique of Forward-Backward Time-Stepping (FBTS). The purpose is to alleviate the ill-posedness and nonlinearity of inverse problem by reducing the size of the unknown problem. The inversion solution is carried out to reconstruct tumour as an unknown object in coarse investigation domain of lung area which is then rescaled down corresponding to object location and size. In this paper, edge preserving methods consisting of edge preserving regularization and anisotropic diffusion are imposed alternately on the solution and reconstructed profiles to improve the current method of AS-ROI. Results on the reconstructed lungs and tumours give significant insight of the proposed work. Accuracy level for the reconstructed profiles are significantly improved in spite that spatial resolution is retained as the original setting of FBTS.
Citation
Juliana Nawawi, Shafrida Sahrani, and Kismet Anak Hong Ping, "Automated Scaling Region of Interest with Iterative Edge Preserving in Forward-Backward Time-Stepping," Progress In Electromagnetics Research M, Vol. 67, 177-188, 2018.
doi:10.2528/PIERM18013002
References

1. Moriyama, T., G. Oliveri, M. Salucci, and T. Takenaka, "A multi-scaling forward-backward time-stepping method for microwave imaging," IEICE Electronics Express, Vol. 11, No. 16, 1-12, 2014.

2. Chen, X., K. Xu, F. Shen, L. Ran, and Y. Zhong, "Subspace-based optimization method coupled with multiplicative regularization for edge-preserving inversion," Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015 IEEE International Symposium, 898-899, 2015.
doi:10.1109/APS.2015.7304836

3. Zhong, Y., M. Lambert, D. Lesselier, and X. Chen, "A new integral equation method to solve highly nonlinear inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1788-1799, 2016.
doi:10.1109/TAP.2016.2535492

4. Garcia-Fernandez, M., C. Garcia, Y. Alvarez, and F. Las-Heras, "Influence of contour smoothness and electric size on the profile reconstruction of metallic objects using hybrid optimization," EUROCON 2015-International Conference on Computer as a Tool (EUROCON), IEEE, 1-6, 2015.

5. Moriyama, T., M. Salucci, T. Tanaka, and T. Takenaka, "Image reconstruction from total electric field data with no information on incident field," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 9, 1162-1170, 2016.
doi:10.1080/09205071.2016.1182876

6. Rekanos, I. T., "Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, 1967-1974, 2008.
doi:10.1109/TGRS.2008.916635

7. Scapaticci, R., O. M. Bucci, I. Catapano, and L. Crocco, "Differential microwave imaging for brain stroke followup," International Journal of Antennas and Propagation, Vol. 2014, 2014.

8. Gantala, G., C. V. Krishnamurthy, and K. Balasubramaniam, "Location and sizing of defects in coated metallic pipes using limited view scattered data in frequency domain," Journal of Nondestructive Evaluation, Vol. 35, No. 2, 1-13, 2016.
doi:10.1007/s10921-016-0338-8

9. Zamani, A., S. A. Rezaeieh, and A. M. Abbosh, "Lung cancer detection using frequency-domain microwave imaging," Electronics Letters, Vol. 51, No. 10, 740-741, 2015.
doi:10.1049/el.2015.0230

10. Hidayetoğlu, M., C.Yang, L. Wang, A. Podkowa, M. Oelze, W. M. Hwu, and W. C. Chew, "Parallel solutions of inverse multiple scattering problems with born-type fast solvers," 2016 Progress In Electromagnetic Research Symposium (PIERS), 916-920, Shanghai, China, Aug. 8–11, 2016.

11. Bao, G., P. Li, J. Lin, and F. Triki, "Inverse scattering problems with multi-frequencies," Inverse Problems, Vol. 31, No. 9, 93001, 2015.
doi:10.1088/0266-5611/31/9/093001

12. Poli, L., G. Oliveri, P. P. Ding, T. Moriyama, and A. Massa, "Multifrequency bayesian compressive sensing methods for microwave imaging," JOSA A, Vol. 31, No. 11, 2415-2428, 2014.
doi:10.1364/JOSAA.31.002415

13. Salucci, M., L. Tenuti, C. Nardin, M. Carlin, F. Viani, G. Oliveri, and A. Massa, "GPR survey through a multi-resolution deterministic approach," Antennas and Propagation Society International Symposium (APSURSI), Vol. 2014, 882-883, IEEE, 2014.

14. Salucci, M., L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 3, 1305-1317, 2016.
doi:10.1109/TGRS.2016.2622061

15. Moriyama, T., G. Oliveri, A. Massa, and T. Takenaka, "Iterative multiscaling strategy incorporated into time domain inverse scattering method for cross-borehole imaging," Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, No. 1, 846-849, 2011.
doi:10.1109/IGARSS.2011.6049263

16. Moriyama, T., M. Salucci, G. Oliveri, L. Tenuti, P. Rocca, and A. Massa, "Multi-scaling deterministic imaging for GPR survey," Antenna Measurements & Applications (CAMA), 2014 IEEE Conference, 1-3, 2014.

17. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inverse Problems, Vol. 25, No. 12, 123003, 2009.
doi:10.1088/0266-5611/25/12/123003

18. Juliana, N., S. Shafrida, and K. A. H. Ping, "Automated scaling region of interest (ASROI) in inverse scattering method for tomographic image reconstruction," 2017 Progress In Electromagnetics Research Symposium - Fall (PIERS - FALL), 1648-1653, Singapore, Nov. 19–22, 2017.

19. Guang, Y., K. A. H. Ping, A. S. C. Chie, N. S. Wei, and M. Thelaha, "Preliminary study of forward-backward time-stepping technique with edge-preserving regularization for object detection applications," BioSignal Analysis, Processing and Systems (ICBAPS), 2015 International Conference, 77-81, 2015.

20. Yong, G., K. A. H. Ping, S. Shafrida, M. Mohamad Hamiruce, S. Mohd Iqbal, T. Moriyama, and T. Takenaka, "Profile reconstruction utilizing forward-backward time-stepping with the integration of automated edge-preserving regularization technique for object detection applications," Progress In Electromagnetics Research M, Vol. 54, 125-135, 2017.
doi:10.2528/PIERM16111001

21. Juliana, N., S. Shafrida, K. A. H. Ping, A. M. Dayang Azra, and A. Z. Dyg Norkhairunnisa, "Iterative refinement in inverse scattering technique with median filter," Applied Electromagnetics (APACE), 2016 IEEE Asia-Pacific Conference, 62-67, 2016.

22. Ping, K. A. H., T. Moriyama, T. Takenaka, and T. Tanaka, "Two-dimensional forward-backward time-stepping approach for tumor detection in dispersive breast tissues," Microwave Symposium (MMS), 2009 Mediterranean, 2009.

23. Takenaka, T., T. Moriyama, K. A. H. Ping, and T. Yamasaki, "Microwave breast imaging by the filtered forward-backward time-stepping method," Electromagnetic Theory (EMTS), 2010 URSI International Symposium, 946-949, 2010.
doi:10.1109/URSI-EMTS.2010.5637368

24. Johnson, J. E., T. Takenaka, K. A. H. Ping, S. Honda, and T. Tanaka, "Advances in the 3-D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 56, No. 9, 2232-2243, 2009.
doi:10.1109/TBME.2009.2022635

25. Elizabeth, M. A. P., K. A. H. Ping, N. S. Wei, W. Z. A. Wan Azlan, M. Thelaha, O. Al-Khalid, T. Moriyama, and T. Takenaka, "2-D reconstruction of breast image using forward-backward time-stepping method for breast tumour detection," Applied Electromagnetics (APACE), 2012 IEEE Asia-Pacific Conference, 70-73, 2012.
doi:10.1109/APACE.2012.6457634

26. Elizabeth, M. A. P., K. A. H. Ping, R. Nordiana, and T. Moriyama, "Chebyshev filter applied to an inversion technique for breast tumour detection," International Journal of Research in Engineering & Technology, Vol. 4, No. 6, 210-218, 2015.
doi:10.15623/ijret.2015.0406035

27. Chie, A. S. C., Y. Guang, K. A. H. Ping, N. S. Wei, and R. Nordiana, "Preliminary results of integrating Tikhonov’s regularization in forward-backward time-stepping technique for object detection," Applied Mechanics and Materials, Vol. 833, 170-175, 2016.
doi:10.4028/www.scientific.net/AMM.833.170

28. Hebert, T. and R. Leahy, "A generalized EM algorithm for 3-D bayesian reconstruction from poisson data using gibbs priors," IEEE Transactions on Medical Imaging, Vol. 8, No. 2, 194-202, 1989.
doi:10.1109/42.24868

29. Fada, G., T. Phuc, G. Shuaiping, and Z. Lina, "Anisotropic diffusion filtering for ultrasound speckle reduction," Science China Technological Sciences, Vol. 57, No. 3, 607-614, 2014.
doi:10.1007/s11431-014-5483-7

30. Mithun Kumar, P. K., M. G. Arefin, M. Motiur Rahman, and A. S. M. Delowar Hossain, "Automatically gradient threshold estimation of anisotropic diffusion for Meyer’s watershed algorithm based optimal segmentation," International Journal of Image, Graphics and Signal Processing, Vol. 6, No. 12, 26-31, 2014.
doi:10.5815/ijigsp.2014.12.04

31. Grove, O., A. E. Berglund, M. B. Schabath, H. J. Aerts, A. Dekker, H. Wang, and R. J. Gillies, "Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma," PloS one, Vol. 10, No. 3, 2015.
doi:10.1371/journal.pone.0118261

32. Anderson, V. and J. Rowley, "Tissue dielectric properties calculator," Clayton, Victoria, Australia: Telstra Research Laboratories, 1998.

33. Holman, B. F., V. Cuplov, L. Millner, B. F. Hutton, T. M. Maher, A. M. Groves, and K. Thielemans, "Improved correction for the tissue fraction effect in lung PET/CT imaging," Physics in Medicine and Biology, Vol. 60, No. 18, 7387-7402, 2015.
doi:10.1088/0031-9155/60/18/7387

34. Hartsgrove, G., A. Kraszewski, and A. Surowiec, "Simulated biological materials for electromagnetic radiation absorption studies," Bioelectromagnetics, Vol. 8, No. 1, 29-36, 1987.
doi:10.1002/bem.2250080105

35. Babarinde, O. J., M. F. Jamlos, P. J. Soh, D. M. M. P. Schreurs, and A. Beyer, "Microwave imaging technique for lung tumour detection," Microwave Conference (GeMiC), 2016 German, 100-103, 2016.
doi:10.1109/GEMIC.2016.7461566

36. Wang, J. R., B. Y. Sun, H. X. Wang, S. Pang, X. Xu, and Q. Sun, "Experimental study of dielectric properties of human lung tissue in vitro," Journal of Medical and Biological Engineering, Vol. 34, No. 6, 598-604, 2014.

37. Charbonnier, P., L. Blanc-Féaud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging," IEEE Transactions on Image Processing, Vol. 6, No. 2, 298-311, 1997.
doi:10.1109/83.551699