Vol. 67
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-23
Spatial Distribution of Magnetic Field Under Spherical Shell Plasma
By
Progress In Electromagnetics Research M, Vol. 67, 189-196, 2018
Abstract
Magnetic field intensity is modeled using Laplacian equations to study the spatial distribution of magnetic field under spherical shell plasma. The influences of different internal and external radii are also considered. In addition, the magnetic field calculation of plasma space is analyzed. The main conclusions are as follows. The external uniform magnetic field H0 is the scalar magnetic bit, and the magnetic charge of the shell of the plasma is equivalent to that of a magnetic dipole. The magnetic field in the spherical shell is a super position of a uniform field and a magnetic dipole field. The uniform field is composed of an externally applied uniform field H0 and a uniform field generated by the magnetic charge on the outer surface of the ball. The magnetic dipole field is generated by the magnetic charge on the inner surface of the shell, and the inside of the shell is a uniform magnetic field. When μ21 is high and a/b is low, the ratio of the magnetic field strength H3 (the regionis r<a) to the magnetic field strength H0 (the region is r>b) is low. By contrast, when μ21 and a/b are high, the ratio of the magnetic field strength H3 to the magnetic field strength H0 is high. When the magnetic permeability of the inner object is small and the spherical shell is thick, the produced plasma sheath is thick, and the external magnetic field in the spherical shell is weak. Therefore, when the shielding effect is good, the possibility that the ``black barrier'' phenomenon will occur is high, and ground radar detection will be difficult.
Citation
Xinhua Song, Honghao Yan, Zhengzheng Ma, Yang Wang, and Bing Xu, "Spatial Distribution of Magnetic Field Under Spherical Shell Plasma," Progress In Electromagnetics Research M, Vol. 67, 189-196, 2018.
doi:10.2528/PIERM18012801
References

1. Chen, F. F., Introduction to Plasma Physics, Plenum Press, 1974.

2. Vidmar, R. J., "On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers," IEEE Transactions on Plasma Science, Vol. 18, No. 4, 733-741, 1990.
doi:10.1109/27.57528

3. Laroussi, M. and J. R. Roth, "Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 21, No. 4, 366-372, 1993.
doi:10.1109/27.234562

4. Mitchell, F. H., "Communication-system blackout during reentry of large vehicles," Proceedings of the IEEE, Vol. 55, No. 5, 619-626, 1967.
doi:10.1109/PROC.1967.5627

5. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace & Electronic Systems, Vol. 7, No. 5, 879-894, 1971.
doi:10.1109/TAES.1971.310328

6. Liu, J. F., X. L. Xi, and Y. Liu, "A solution to the propagation of electromagnetic wave in plasma sheath using FDTD method," International Symposium on Antennas, 442-445, 2008.

7. Kim, M., M. Keidar, and I. D. Boyd, "Electrostatic manipulation of a hypersonic plasma layer: Images of the two-dimensional sheath," IEEE Transactions on Plasma Science, Vol. 36, No. 4, 1198-1199, 2008.
doi:10.1109/TPS.2008.926968

8. Liu, J. F., X. L. Xi, G. B. Wan, and L. L. Wang, "Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 852-855, 2011.
doi:10.1109/TPS.2010.2098890

9. Hodara, H., "The use of magnetic fields in the elimination of the re-entry radio blackout," Proceedings of the IRE, Vol. 49, No. 12, 1825-1830, 1961.
doi:10.1109/JRPROC.1961.287709

10. Russo, F. P. and J. K. Hughs, "Measurments of the effects of static magnetic fields on vhf transmission in ionized flow fields," NASA: Langley Research Center, 1964.

11. Russo, F. P., "Electromagnetic wave/magnetoactive plasma sheath interaction for hypersonic vehicle telemetry black out analysis," 34th AIAA Plasmadynamics and Lasers Conference, Orlando, USA, Jun. 23–26, 2003.

12. Keidar, M., M. Kim, and I. D. Boyd, "Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights," Journal of Spacecraft and Rockets, Vol. 45, No. 3, 445-453, 2008.
doi:10.2514/1.32147

13. Kim, M., M. Keidar, and I. D. Boyd, "Two-dimensional modal of an electromagnetic layer for the mitigation of communication blackout," 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 092407, Orlando, Florida, 2009.

14. Tai, Y.-C. and S.-J. Fang, Electromagnetic Field and Electromagnetic Wave, 184, Dalian Maritime University Press, 2003 (in Chinese).

15. Zhang, X.-H., Manufacturing Technology and Practice, Vol. 22, Beihang University Press, 2011 (in Chinese).

16. Yang, J., L.-M. Zhu, W.-Y. Su, and G.-W. Mao, "Study on calculation of power reflection coefficient of electromagnetic wave on magnetized plasma surface," Acta Physica Sinica, Vol. 54, No. 7, 3236-3240, 2005.

17. Guan, J. and H. Zheng, Electrodynamics, China University of Petroleum Press, 2015 (in Chinese).