Vol. 74
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-27
Realization of Ku-Band Ortho Mode Transducer with High Port to Port Isolation
By
Progress In Electromagnetics Research Letters, Vol. 74, 111-115, 2018
Abstract
Present paper describes the design, development and evaluation of a wideband, compact Ku-band orthomode transducer (OMT) for SATCOM application. It consists of a square waveguide output section, square waveguide to rectangular waveguide transition, straight waveguide port and an orthogonally coupled port. A tapered waveguide section has been used to couple the orthogonal RF (Radio Frequency) signal to the common port. The designed OMT has a transmit port with frequency band 13.75 GHz-14.5 GHz and a receive port with frequency band 10.95-12.5 GHz. Finite element method based ANSYS's High Frequency Structure Simulator (HFSS) EM software has been used for simulation and optimization of OMT. Measured reflection coefficients of OMT over transmission and reception frequency bands are better than -15 dB and -12 dB, respectively. Designed OMT has port to port isolation better than 45 dB against 30 dB isolation of conventional OMT available in market.
Citation
Pramendra Kumar Verma, and Raj Kumar, "Realization of Ku-Band Ortho Mode Transducer with High Port to Port Isolation," Progress In Electromagnetics Research Letters, Vol. 74, 111-115, 2018.
doi:10.2528/PIERL18012201
References

1. Jogelkar, H. P. and M. Singh, "A rectangular waveguide orthomode transducer," International Journal of Electronics, Vol. 47, No. 5, 515-517, 1979.
doi:10.1080/00207217908938670

2. Dang, N. D., S. Kapartis, and D. J. Brain, "A wideband compact end-entry septum polariser OMT," Int. Conference on Antenna & Propagation ICAP87, Vol. 1, No. 274, 419-423, U.K., 1987.

3. Skinner, S. J. and G. L. James, "Wideband ortho-mode transducer," IEEE Trans. Microwave Theory & Tech., Vol. 39, No. 2, 294-300, February 1991.
doi:10.1109/22.102973

4. Uher, J., J. Bornemann, and U. Rosenberg, Waveguide Components for Antenna Feed Systems: Theory and CAD, Artech House, Norwood, MA, 1993.

5. Rebollar, J. M., J. Esteban, and J. de Frutos, "A dual frequency OMT in the Ku band for TT&C applications," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 2258-2261, Atlanta, GA, June 1998.

6. Targonski, S. D., "A multiband antenna for satellite communications on the move," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2862-2868, October 2006.
doi:10.1109/TAP.2006.882177

7. Sharma, S. B., V. K. Singh, and S. Chakrabarty, "Multifrequency waveguide ortomode transducer," IEEE Trans. Microwave Theory & Tech., Vol. 53, No. 8, 2604-2609, August 2005.
doi:10.1109/TMTT.2005.852754

8. Tao, Y. and Z. Shen, "Broadband substrate integrated waveguide orthomode transducers," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2099-2108, 2009.
doi:10.1163/156939309790109298

9. Soon, M. H., S. Choi, J. M. Kim, and B. Song, "Design of an orthomode transducer for use in multi-band antenna feeds," PIERS Proceedings, 1172-1176, Moscow, Russia, August 18–21, 2009.

10. Tao, Y., Z. Shen, and G. Liu, "Dual-band ortho-mode transducers with irregularly shaped diaphragm," Progress In Electromagnetics Research Letters, Vol. 27, 1-8, 2011.
doi:10.2528/PIERL11080104

11. Dunning, A., M. Bowen, and Y. Chung, "Offset quad ridged ortho-mode transducer with a 3.4 : 1 bandwidth," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Vol. 146, No. 148, 2013.

12. Fan, J., Y. Yan, C. Jin, D. Zhan, and J.-R. Luo, "Design of wideband quad-ridged waveguide orthomode transducer at L-band," Progress In Electromagnetics Research C, Vol. 72, 115-122, 2017.
doi:10.2528/PIERC17010802

13. Boifot, A. M., E. Lier, and T. Schaug-Pettersen, "Simple and broadband orthomode transducer," IEE Proceedings Microwaves, Antenna & Propagation, Vol. 137, No. 6, 396-400, 1990.
doi:10.1049/ip-h-2.1990.0071

14. Boifot, A. M., "Classification of orthomode transducer," European Trans on Emerging Telecommunication Technologies, Vol. 2, No. 5, 503-510, 1991.
doi:10.1002/ett.4460020507