Vol. 65
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-23
An ISAR Imaging Method for Search Radar Involving Nonuniform Angle Samples
By
Progress In Electromagnetics Research M, Vol. 65, 9-17, 2018
Abstract
This paper proposes a two-dimensional (2-D) inverse synthetic aperture radar (ISAR) imaging method with nonuniformly obtained angle samples. A one-dimensional (1-D) radar image, a range profile, is obtained using frequency samples within a given bandwidth. 2-D ISAR images are then obtained by acquiring the Doppler spectrum using range profiles obtained from multiple observation angles having a constant interval. However, when ISAR images are obtained by applying the range-Doppler imaging method for a target scattered signal with nonuniform angle samples, a clear image cannot be obtained. In this paper, we propose a method to generate a covariance matrix from a nonuniform angle sample and obtain an ISAR image based on the multiple signal characterization (MUSIC) technique. The proposed method can be applied to the target scattering signal using a search radar, which observes target with nonuniform aspect angles. We present a scattering signal model of a target for the search radar and provide ISAR images obtained by applying the proposed method to simulated and measured data, respectively. Results reveal that the proposed method improves image quality and reduces computation time compared to the conventional method.
Citation
Hyung-Ju Kim, Kee Ung Bae, Won-Young Song, Eunjung Yang, and Noh-Hoon Myung, "An ISAR Imaging Method for Search Radar Involving Nonuniform Angle Samples," Progress In Electromagnetics Research M, Vol. 65, 9-17, 2018.
doi:10.2528/PIERM18011802
References

1. Ausherman, D. A., A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Development in radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 20, No. 4, 363-400, 1984.
doi:10.1109/TAES.1984.4502060

2. Li, H. J. and S. H. Yang, "Using range pro¯les as feature vectors to identify aerospace objects," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 3, 261-268, 1993.
doi:10.1109/8.233138

3. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 655-669, 2005.
doi:10.1163/1569393053305062

4. Chen, C. C. and H. C. Andrews, "Target-motion-induced radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, 2-14, 1980.
doi:10.1109/TAES.1980.308873

5. Chen, V. C. and S. Qian, "Joint time-frequency transform for radar range-Doppler imaging," IEEE Transactions on Aerospace and Electronic System, Vol. 34, No. 2, 486-499, 1998.
doi:10.1109/7.670330

6. Kim, K. T., D. K. Seo, and H. T. Kim, "Efficient radar target recognition using the MUSIC algorithm and invariant features," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 3, 325-327, 2002.
doi:10.1109/8.999623

7. Chen, V. C. and H. Ling, Time-frequency Transforms for Radar Imaging and Signal Analysis, Artech House, 2002.

8. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

9. Zhang, L., M. Xing, C. W. Qiu, J. Li, and Z. Bao, "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geoscience and Remoted Sensing Letters, Vol. 6, No. 3, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584

10. Wang, B., S. Zhang, and W. Q. Wang, "Bayesian inverse synthetic aperture radar imaging by exploiting sparse probing frequencies," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1698-1701, 2015.
doi:10.1109/LAWP.2015.2419275

11. Hou, Q., Y. Liu, and Z. Chen, "Reducing micro-Doppler effect in compressed sensing ISAR imaging for aircraft using limited pulses," Electronics Letters, Vol. 51, No. 12, 937-939, 2015.
doi:10.1049/el.2015.0368

12. Khwaja, A. S. and X. P. Zhang, "Compressed sensing ISAR reconstruction in the presence of rotational acceleration," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 7, 2957-2970, 2014.

13. Karabayir, O., O. M. Yucedag, S. M. Yucedag, and S. Kent, "Performance analysis of compressive ISAR imaging for complex targets," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 10, 1236-1245, 2014.
doi:10.1080/09205071.2014.913506

14. Thakre, A., M. Haardt, and K. Giridhar, "Single snapshot spatial smoothing with improved effective array aperture," IEEE Signal Processing Letters, Vol. 16, No. 6, 505-508, 2009.
doi:10.1109/LSP.2009.2017573

15. Doron, M. A. and E. Doron, "Wavefield modeling and array processing, Part 1 - Spatial sampling," IEEE Transactions on Signal Processing, Vol. 42, No. 10, 2549-2559, 1994.
doi:10.1109/78.324722

16. Belloni, F., A. Richter, and V. Koivunen, "DoA estimation via manifold separation for arbitrary array structures," IEEE Transactions on Signal Processing, Vol. 55, No. 10, 4800-4810, 2007.
doi:10.1109/TSP.2007.896115

17. Potter, L. C., D. M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 10, 1058-1067, 1995.
doi:10.1109/8.467641

18. Friedlander, B. and A. J. Weiss, "Direction finding using spatial smoothing with interpolated arrays," IEEE Transactions on Aerospace and Electronics System, Vol. 28, No. 2, 574-587, 1992.
doi:10.1109/7.144583

19. Rubsamen, M. and A. B. Gershman, "Direction-of-Arrival estimation for nonuniform sensor arrays: From manifold separation to Fourier domain MUSIC methods," IEEE Transactions on Signal Processing, Vol. 57, No. 2, 588-599, 2009.
doi:10.1109/TSP.2008.2008560

20. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830