Vol. 67
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-11
Thermal Energy Based Resonant Inductively Coupled Wireless Energization Method for Implantable Biomedical Sensor
By
Progress In Electromagnetics Research M, Vol. 67, 129-136, 2018
Abstract
In order to energize the biomedical implantable electronic devices wirelessly for in vivo health monitoring of patients in remote and inaccessible areas, an alternate driving energy source is highly desirable and increasingly important. In pertinent to this, a thermal energy driven resonant inductively coupled wireless energizing scheme has been developed for powering biomedical implantable devices. The system is designed to convert the generated heat energy to a high frequency energy source so as to facilitate energy transfer through resonant inductive link to the automated biomedical sensing system allied with the receiver unit. The automated biomedical smart sensor is competent to acquire the body parameter and transmit the consequent telemetry data from the body to the data recording segment. The real-time body temperature parameter in different conditions has been experimented. To ensure its accuracy, the sensed data have been matched with the observations carried out by a calibrated device. The intended scheme can be utilized for wireless monitoring of other health parameters like physiological signals and bladder as well as blood pressure of the patients.
Citation
Biswaranjan Swain, Durga Prasanna Kar, Praveen Priyaranjan Nayak, and Satyanarayan Bhuyan, "Thermal Energy Based Resonant Inductively Coupled Wireless Energization Method for Implantable Biomedical Sensor," Progress In Electromagnetics Research M, Vol. 67, 129-136, 2018.
doi:10.2528/PIERM18011603
References

1. Rasouli, M. and S. Jay, "Energy sources and their developments for application in medical devices," Expert Review of Medical devices, Vol. 7, 693-709, 2010.
doi:10.1586/erd.10.20

2. Kiourti, A., K. A. Psathas, J. R. Costa, C. A. Fernandes, and K. S. Nikita, "Dual-band implantable antennas for medical telemetry: A fast design methodology and validation for intra-cranial pressure monitoring," Progress In Electromagnetics Research, Vol. 141, 161-183, 2013.
doi:10.2528/PIER13051706

3. Riistama, J., J. Vaisanen, S. Heinisuo, H. Harjunpa, S. Arra, K. Kokko, M. Antyla, J. Kaihilahti, P. Heino, M. Kellomaki, O. Vainio, J. Vanhala, J. Lekkala, and J. Hyttinen, "Wireless and inductively powered implant for measuring electrocardiogram," Med. Bio. Eng. Comput., Vol. 45, 1163-1174, 2007.
doi:10.1007/s11517-007-0264-0

4. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515

5. Mohsin, S. A., "A simple EM model for determining the scattered magnetic resonance radiofrequency field of an implanted medical device," Progress In Electromagnetics Research M, Vol. 14, 1-14, 2010.
doi:10.2528/PIERM10043006

6. Puers, R. and G. Vandevoorde, "Recent progress on transcutaneous energy transfer for total artificial heart system," Artificial Organs, Vol. 25, 400-405, 2001.
doi:10.1046/j.1525-1594.2001.025005400.x

7. Ozeri, S. and D. Shmilovitz, "Ultrasonic transcutaneous energy transfer for powering implanted devices," Ultrasonics, Vol. 50, 556-559, 2010.
doi:10.1016/j.ultras.2009.11.004

8. Goto, K., T. Nakagawa, O. Nakamura, and S. Kawata, "An implantable power supply with an optical rechargeable lithium battery," IEEE Trans. Biomed. Eng., Vol. 48, 830-833, 2001.
doi:10.1109/10.930908

9. Wang, G., W. Liu, M. Sivaprakasam, and G. A. Kendir, "Design and analysis of adaptive transcutaneous power telemetry for biomedical implant," IEEE Trans. Circuits and System, Vol. 52, 2109-2117, 2005.
doi:10.1109/TCSI.2005.852923

10. Vullers, M. and R. V. Schaijk, "A review of the present situation and future developments of micor-batteries for wireless autonomous sensor systems," International Journal of Energy Research, Vol. 36, 1139-1150, 2012.
doi:10.1002/er.2949

11. Li, X., H. Zhang, F. Peng, Y. Li, T. Yang, B. Wang, and D. Fang, "A wireless magnetic resonance energy transfer system for micro implantable medical sensors," Sensors, Vol. 12, No. 8, 10292-10308, 2012.
doi:10.3390/s120810292

12. Ram Rakhyani, A., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782

13. Swain, B., P. P. Nayak, D. P. Kar, S. Bhuyan, and L. P. Mishra, "Wireless energizing system for an automated implantable sensor," Review of Scientific Instruments, Vol. 87, 074708, 2016.
doi:10.1063/1.4959269

14. Bhuyan, S., S. K. Panda, K. Sivananda, and R. Kumar, "A compact resonace-based wireless energy transfer system for implanted electronic devices," International Conference on Energy, Automation, and Signal (ICEAS), 1-3, 2011.

15. Hannan, M. A., S. Mutashar, S. A. Samad, and A. Hussain, "Energy harvesting for the implantable biomedical devices: Issues and challenges," BioMedical Engineering OnLine, Vol. 13, 79, 2014.
doi:10.1186/1475-925X-13-79

16. Rowe, D. M., Handbook of Thermoelectrics, CRC Press Boca Raton, 1995.
doi:10.1201/9781420049718

17. Wang, Z. Y., V. Leonov, P. Fiorini, and C. Van Hoof, "Realization of a wearable miniaturized thermoelectric generator for human body applications," Sens. Actuators A, Vol. 156, 95-102, 2009.
doi:10.1016/j.sna.2009.02.028

18. Leonov, V., T. Torfs, P. Fiorini, and C. V. Hoof, "Thermoelectric converters of human warmth for self-powered wireless sensor nodes," IEEE Sens. J., Vol. 7, 650-657, 2007.
doi:10.1109/JSEN.2007.894917