Vol. 67
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-11
Research on a Superconducting Synchronous Generator for Wind Power
By
Progress In Electromagnetics Research M, Vol. 67, 95-104, 2018
Abstract
A superconducting synchronous generator (SSG) is proposed for wind power, in which magnesium diboride (MgB2) superconducting coils are employed as field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole refrigeration method is adopted in this paper. The thermal barrier is not placed in between the stator and the rotor as compared with the prior HTS generators, so a small air gap width would be possible. In order to study the electromagnetic characteristics of the SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the no-load and load performance of the initial and optimized SSG. Finally, the optimized SSG is compared with a traditional synchronous generator (TSG) of the same power. The results indicate that the optimized SSG has many merits such as small size, light weight, high efficiency and high power factor.
Citation
Cheng Wen, and Xiaoyun Sun, "Research on a Superconducting Synchronous Generator for Wind Power," Progress In Electromagnetics Research M, Vol. 67, 95-104, 2018.
doi:10.2528/PIERM18011101
References

1. Bladber, B., "Power electronics as efficient interface in dispersed power generation systems," IEEE Trans. Power Electron., Vol. 19, No. 5, 1184-1194, Sep. 2004.
doi:10.1109/TPEL.2004.833453

2. Qu, R., Y. Liu, and J. Wang, "Review of superconducting generator topologies for direct-drive wind turbines," IEEE Trans. Appl. Supercond., Vol. 23, No. 3, 5201108, Jun. 2013.
doi:10.1109/TASC.2013.2241387

3. Iwa Kuma, M., Y. Hase, T. Satou, et al. "Development of a 7.5 kW YBCO superconducting synchronous motor," IEEE Trans. Appl. Supercond., Vol. 18, No. 2, 689-691, Jun. 2008.
doi:10.1109/TASC.2008.920564

4. Snitchler, G., B. Gamble, C. Kimg, and P. Winn, "10 MW class superconductor wind turbine generators," IEEE Trans. Appl. Supercond., Vol. 21, No. 3, 1089-1092, Jun. 2011.
doi:10.1109/TASC.2010.2100341

5. Jia, S., R. Qu, J. Li, et al. "A novel vernier reluctance fully super conducting direct drive synchronous generator with concentrated windings for wind power application," IEEE Trans. Appl. Supercond., Vol. 26, No. 7, 5207205, Oct. 2016.

6. Nagamatsu, J., N. Nakagawa, and T. Muranaka, "Superconductivity at 39 K in magnesium diboride," Nature, Vol. 410, No. 6824, 63-64, 2001.
doi:10.1038/35065039

7. Wen, H., W. Bailey, K. Goddard, and M. Al-Mosawi, "Performance test of a 100 kW HTS generator operating at 67 K–77 K," IEEE Trans. Appl. Supercond., Vol. 19, No. 3, 1652-1655, Jun. 2009.
doi:10.1109/TASC.2009.2017832

8. Leveque, J., D. Netter, B. Douine, and A. Rezzoug, "Some considerations about the cooling of the rotor of a superconducting motor," IEEE Trans. Appl. Supercond., Vol. 17, No. 1, 44-51, Mar. 2007.
doi:10.1109/TASC.2006.887542

9. Wen, C., H. Yu, T. Hong, et al. "Coil shape optimization for superconducting wind turbine generator using response surface methodology and particle swarm optimization," IEEE Trans. Appl. Supercond., Vol. 24, No. 3, 5202404, Jun. 2014.

10. Jiang, Q., M. Majoros, Z. Hong, A. M. Campbell, and T. A. Coombs, "Design and AC loss analysis of a superconducting synchronous motor," Supercond. Sci. Technol., Vol. 19, 1164-1168, 2006.
doi:10.1088/0953-2048/19/11/012