Vol. 66
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-27
Two Dimensional Green's Function for a Half Space Geometry Due to Two Different Non-Integer Dimensional Spaces
By
Progress In Electromagnetics Research M, Vol. 66, 119-126, 2018
Abstract
A two-dimensional Green's function for a half space geometry, comprising planar interface only due to two different non-integer dimensional spaces, has been derived. Medium hosting the time harmonic electric line source and planar interface is homogeneous and isotropic. Radiated field is written in terms of unknown spectrum of plane waves. Unknown spectrum functions are determined using the related boundary conditions. It has been shown that although wavenumbers of both half spaces are same, due to difference of dimensions of the two half spaces, reflection and transmission occur. When dimensions of both half spaces are taken equal to two, derived expressions yield field radiated by a line source in an unbounded homogeneous medium with integer dimensional space.
Citation
Muhammad Fiaz, and Qaisar Naqvi, "Two Dimensional Green's Function for a Half Space Geometry Due to Two Different Non-Integer Dimensional Spaces," Progress In Electromagnetics Research M, Vol. 66, 119-126, 2018.
doi:10.2528/PIERM18011022
References

1. Stillinger, F. H., "Axiomatic basis for spaces with non-integer dimensions," Journal of Mathematical Physics, Vol. 18, 1224-1234, 1977.
doi:10.1063/1.523395

2. Zubair, M., M. J. Mughal, and Q. A. Naqvi, Fractional Fields and Waves in Fractional Dimensional Space, Springer-Verlag, 2012.
doi:10.1007/978-3-642-25358-4

3. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solution in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.
doi:10.2528/PIERL10102103

4. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of cylindrical wave equation for electromagnetic field in fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011.
doi:10.2528/PIER11021508

5. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of spherical wave in D-dimensional fractional space," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1481-1491, 2011.

6. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "On electromagnetic wave propagation in fractional space," Nonlinear Analysis: Real World Applications, Vol. 12, 2844-2850, 2011.
doi:10.1016/j.nonrwa.2011.04.010

7. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetics Research, Vol. 114, 255-269, 2011.
doi:10.2528/PIER11011403

8. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402

9. Attiya, A. M., "Reflection and transmission of electromagnetic wave due to a quasi-fractional-space slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011.
doi:10.2528/PIERL11051105

10. Baleanua, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058

11. Naqvi, Q. A. and M. Zubair, "On cylindrical model of electrostatic potential in fractional dimensional space," Optik-International Journal for Light and Electron Optics, Vol. 127, 3243-3247, 2016.
doi:10.1016/j.ijleo.2015.12.019

12. Noor, A., A. A. Syed, and Q. A. Naqvi, "Quasi-static analysis of scattering from a layered plasmonic sphere in fractional space," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 8, 1047-1059, 2015.
doi:10.1080/09205071.2015.1032436

13. Asad, H., M. J. Mughal, M. Zubair, and Q. A. Naqvi, "Electromagnetic Green’s function for fractional space," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1903-1910, 2012.
doi:10.1080/09205071.2012.720748

14. Abbas, M., A. A. Rizvi, and Q. A. Naqvi, "Two dimensional Green’s function for non-integer dimensional dielectric half space geometry," Optik-International Journal for Light and Electron Optics, Vol. 127, 8530-8535, 2016.
doi:10.1016/j.ijleo.2016.06.059

15. Zubair, M. and L. K. Ang, "Fractional-dimensional Child-Langmuir law for a rough cathode," Physics of Plasmas (1994-present), Vol. 23, 072118, 2016.
doi:10.1063/1.4958944

16. Hameed, A., M. Omar, A. A. Syed, and Q. A. Naqvi, "Power tunneling and rejection from fractal chiral-chiral interface," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 14, 1766-1776, 2014.
doi:10.1080/09205071.2014.938448

17. Abbas, M., A. A. Rizvi, A. Fiaz, and Q. A. Naqvi, "Scattering of electromagnetic plane wave from a low contrast circular cylinder buried in non-integer dimensional half space," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 3, 263-283, 2017.
doi:10.1080/09205071.2016.1276859

18. Sandev, T., I. Petreska, and E. K. Lenzi, "Harmonic and anharmonic quantum-mechanical oscillators in non-integer dimensions," Phys. Lett. A, Vol. 378, 109-116, 2014.
doi:10.1016/j.physleta.2013.10.048

19. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer-dimensional space," Journal of Physics A: Mathematical and General, Vol. 37, 2004.

20. Muslih, S., D. Baleanu, and E. Rabei, "Gravitational potential in fractional space," Open Physics, Vol. 5, 285-292, 2007.
doi:10.2478/s11534-007-0014-9

21. Tarasov, V. E., "Continuous medium model for fractal media," Phys. Lett. A, Vol. 336, 167-174, 2005.
doi:10.1016/j.physleta.2005.01.024

22. Tarasov, V. E., "Anisotropic fractal media by vector calculus in non-integer dimensional space," Journal of Mathematical Physics, Vol. 55, 083510, 2014.
doi:10.1063/1.4892155

23. Tarasov, V. E., "Elasticity of fractal materials using the continuum model with non-integer dimensional space," Comptes Rendus Mecanique, Vol. 343, 57-73, 2015.
doi:10.1016/j.crme.2014.09.006

24. Tarasov, V. E., "Flow of fractal fluid in pipes: Non-integer dimensional space approach," Chaos, Solitons and Fractals, Vol. 67, 26-37, 2014.
doi:10.1016/j.chaos.2014.06.008

25. Tarasov, V. E., "Vector calculus in non-integer dimensional space and its applications to fractal media," Communications in Nonlinear Science and Numerical Simulation, Vol. 20, 360-374, 2015.
doi:10.1016/j.cnsns.2014.05.025

26. Tarasov, V. E., "Electromagnetic waves in non-integer dimensional spaces and fractals," Chaos, Solitons and Fractals, Vol. 81, 38-42, 2015.
doi:10.1016/j.chaos.2015.08.017

27. Tarasov, V. E., "Fractal electrodynamics via non-integer dimensional space approach," Phys. Lett. A, Vol. 379, 2055-2061, 2015.
doi:10.1016/j.physleta.2015.06.032

28. Tarasov, V. E., "Acoustic waves in fractal media: Non-integer dimensional spaces approach," Wave Motion, Vol. 63, 18-22, 2016.
doi:10.1016/j.wavemoti.2016.01.003

29. Naqvi, Q. A. and A. A. Rizvi, "Scattering from a cylindrical object buried in a geometry with parallel interfaces," Progress In Electromagnetics Research, Vol. 27, 19-35, 2000.
doi:10.2528/PIER98120902

30. Bender, C. M. and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineering, McGraw-Hill, 1999.
doi:10.1007/978-1-4757-3069-2