Vol. 65
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-24
An Annular-Ring Miniaturized Stopband Frequency Selective Surface with Ultra-Large Angle of Incidence
By
Progress In Electromagnetics Research M, Vol. 65, 19-27, 2018
Abstract
An annular-ring element for building a miniaturized bandstop frequency selective surface (FSS) structure which possesses a superior performance with respect to electromagnetic wave polarizations and incident angles is introduced in this paper. The proposed element has prominent miniaturization characteristics with a unit dimension of 0.061λ×0.061λ, where λ represents the free-space wavelength corresponding to resonant frequency. Miniaturization of the proposed FSS element is achieved by constructing special meandered strips in geometry and arranging lumped components between the elements. The advantage of this method lies in its great simplicity in tuning the resonant frequency of FSS by adjusting values of the printed capacitors rather than rebuilding the geometry. The obtained FSS also exhibits a stable performance in terms of angle stability and polarization insensitivity. Prototypes of the proposed FSS are fabricated and measured to verify design method. Measurements are well in line with simulation results.
Citation
Kunzhe Zhang, Wen Jiang, Junyi Ren, and Shu-Xi Gong, "An Annular-Ring Miniaturized Stopband Frequency Selective Surface with Ultra-Large Angle of Incidence," Progress In Electromagnetics Research M, Vol. 65, 19-27, 2018.
doi:10.2528/PIERM18011014
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770

2. Chaharmir, M. R. and J. Shaker, "Design of a multilayer X-/Ka-band frequency-selective surface-backed reflectarray for satellite applications," IEEE Trans. Antennas Propag., Vol. 63, 1255-1262, 2015.
doi:10.1109/TAP.2015.2389838

3. Boccia, L., I. Russo, G. Amendola, and G. Di Massa, "Tunable frequency-selective surfaces for beam-steering applications," Electronics Letters, Vol. 45, 1213-1215, 2009.
doi:10.1049/el.2009.2577

4. Sivasamy, R., M. Kanagasabai, et al. "A novel shield for GSM 1800 MHz band using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 38, 193-199, 2013.
doi:10.2528/PIERL13022206

5. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas Wireless. Propag. Lett., Vol. 14, 511-514, 2015.
doi:10.1109/LAWP.2014.2369732

6. Zheng, J. and S. J. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702

7. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electronics Letters, Vol. 52, 767-768, 2016.
doi:10.1049/el.2016.0336

8. Xie, D., X. Liu, H. Guo, et al. "Wideband absorber with multi-resonant gridded-square FSS for antenna RCS reduction," IEEE Antennas Wireless. Propag. Lett., Vol. 16, 629-632, 2017.
doi:10.1109/LAWP.2016.2594213

9. Edalati, A. and K. Sarabandi, "Reflectarray antenna based on grounded loop-wire miniaturized element frequency selective surfaces," Microwaves Antennas & Propagation IET, Vol. 8, 973-979, 2014.
doi:10.1049/iet-map.2013.0432

10. Liu, X., Q. Wang, W. Zhang, et al. "On the improvement of angular stability of the 2nd-order miniaturized FSS structure," IEEE Antennas Wireless. Propag. Lett., Vol. 15, 826-829, 2016.
doi:10.1109/LAWP.2015.2476384

11. Rahmati, B. and H. R. Hassani, "Multiband metallic frequency selective surface with wide range of band ratio," IEEE Trans. Antennas Propag., Vol. 63, 3747-3753, 2015.
doi:10.1109/TAP.2015.2438340

12. Lee, I. G. and I. P. Hong, "3D frequency selective surface for stable angle of incidence," Electronics Letters, Vol. 50, 423-424, 2014.
doi:10.1049/el.2014.0053

13. Li, B. and Z. X. Shen, "Miniaturized bandstop frequency-selective structure using stepped impedance resonators," IEEE Antennas Wireless. Propag. Lett., Vol. 12, 1112-1115, 2012.

14. Hussain, T., Q. Cao, J. Kayani, et al. "Miniaturization of frequency selective surfaces using 2.5-dimensional knitted structures: Design and synthesis," IEEE Trans. Antennas Propag., Vol. 65, 2405-2412, 2017.
doi:10.1109/TAP.2017.2673809

15. Azemi, G. W., "Angularly stable frequency selective surface with miniaturized unit cell," IEEE Microwave & Wireless Components Lett., Vol. 25, 454-456, 2015.
doi:10.1109/LMWC.2015.2429126

16. Zhao, Z., H. Shi, J. Guo, et al. "A stop-band frequency selective surface with ultra-large angle of incidence," IEEE Antennas Wireless. Propag. Lett., Vol. 16, 553-556, 2017.
doi:10.1109/LAWP.2016.2588528