Vol. 66
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-29
A `Divide and Conquer' Regularization Imaging Method for Forward-Looking Scanning Radar Azimuth Super-Resolution
By
Progress In Electromagnetics Research M, Vol. 66, 151-161, 2018
Abstract
Sparse regularization imaging method (SRIM) is an effective approach to implement azimuth super-resolution for forward-looking scanning radar. However, for the scene that contains adjacent strong targets in the continuous weak background, SRIM may destroy the structure of the scene when trying to separate the closely located targets. In this paper, a divide and conquer regularization imaging method (DC-RIM) is proposed to solve this problem. Firstly, the data are divided into two channels by the mean-variance segmentation method. Normally, we consider that the data of channel I contain strong scatterers and that the data of channel II contain weak background. Afterwards, SRIM is conducted on channel I to distinguish the targets. For the data of channel II, a region enhancement regularization method is particularly proposed to acquire a good structure of the scene by making use of two-order gradient information of the data. Finally, a good imaging result can be obtained by combining the results of two channels. Experiments based on both synthetic and real data are given to verify the effectiveness of the method.
Citation
Ke Tan, Wenchao Li, Yulin Huang, Qian Zhang, and Jianyu Yang, "A `Divide and Conquer' Regularization Imaging Method for Forward-Looking Scanning Radar Azimuth Super-Resolution," Progress In Electromagnetics Research M, Vol. 66, 151-161, 2018.
doi:10.2528/PIERM18011005
References

1. Ma, C., H. Gu, W. Su, and C. Li, "Bistatic forward-looking synthetic aperture radar imaging based on the modified Loffeld’s bistatic formula," Progress In Electromagnetics Research M, Vol. 36, 117-129, 2014.
doi:10.2528/PIERM14031706

2. Liu, C., S. Zhang, C. Dai, and J. Zhou, "Focusing translational variant bistatic forward-looking SAR data based on two-dimensional non-uniform FFT," Progress In Electromagnetics Research M, Vol. 37, 1-10, 2014.
doi:10.2528/PIERM14040501

3. Zhang, Y., Y. Huang, Y. Zha, and J. Yang, "Superresolution imaging for forward-looking scanning radar with generalized gaussian constraint," Progress In Electromagnetics Research M, Vol. 46, 1-10, 2016.
doi:10.2528/PIERM15120805

4. Loehner, A., "Improved azimuthal resolution of forward looking SAR by sophisticated antenna illumination function design," IEE Proceedings - Radar, Sonar and Navigation, Vol. 145, No. 2, 128-134, 1998.
doi:10.1049/ip-rsn:19981731

5. Feng, D., D. X. An, and X.-T. Huang, "Image formation using fast factorized backprojection based on sub-aperture and sub-image for general bistatic forward-looking SAR with arbitrary motion," Progress In Electromagnetics Research B, Vol. 74, 141-153, 2017.
doi:10.2528/PIERB17011702

6. Dropkin, H. and C. Ly, "Superresolution for scanning antenna," 1997 IEEE National Radar Conference, 306-308, IEEE, 1997.
doi:10.1109/NRC.1997.588326

7. Zhang, Y., Y. Zhang, W. Li, Y. Huang, and J. Yang, "Super-resolution surface mapping for scanning radar: Inverse filtering based on the fast iterative adaptive approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 1, 127-144, 2017.
doi:10.1109/TGRS.2017.2743263

8. Zha, Y., Y. Huang, and J. Yang, "An iterative shrinkage deconvolution for angular superresolution imaging in forward-looking scanning radar," Progress In Electromagnetics Research B, Vol. 65, 35-48, 2016.
doi:10.2528/PIERB15100501

9. Golub, G. H., P. C. Hansen, and D. P. O’Leary, "Tikhonov regularization and total least squares," SIAM Journal on Matrix Analysis and Applications, Vol. 21, No. 1, 185-194, 1999.
doi:10.1137/S0895479897326432

10. Moulin, P., "A wavelet regularization method for diffuse radar-target imaging and speckle-noise reduction," Journal of Mathematical Imaging and Vision, Vol. 3, No. 1, 123-134, 1993.
doi:10.1007/BF01248407

11. Zhang, X., E. Y. Lam, E. X. Wu, and K. K. Wong, "Application of Tikhonov regularization to super-resolution reconstruction of brain MRI images," Medical Imaging and Informatics, 51-56, 2008.
doi:10.1007/978-3-540-79490-5_8

12. Liu, L., W. Huang, and C. Wang, "Texture image prior for SAR image super resolution based on total variation regularization using split Bregman iteration," International Journal of Remote Sensing, Vol. 38, No. 20, 5673-5687, 2017.
doi:10.1080/01431161.2017.1346325

13. Zhu, X. X. and R. Bamler, "Tomographic sar inversion by l1-norm regularization - The compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2010.
doi:10.1109/TGRS.2010.2048117

14. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

15. Zhang, L., M. Xing, C.-W. Qiu, J. Li, and Z. Bao, "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 3, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584

16. Chen, H. M., M. Li, Z. Wang, Y. Lu, P. Zhang, and Y. Wu, "Sparse super-resolution imaging for airborne single channel forward-looking radar in expanded beam space via lp regularisation," Electronics Letters, Vol. 51, No. 11, 863-865, 2015.
doi:10.1049/el.2014.3978

17. Guan, J., J. Yang, Y. Huang, and W. Li, "Maximum a posteriori-based angular superresolution for scanning radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 3, 2389-2398, 2014.
doi:10.1109/TAES.2014.120555

18. Hansen, P. C. and D. P. O’Leary, "The use of the l-curve in the regularization of discrete ill-posed problems," SIAM Journal on Scientific Computing, Vol. 14, No. 6, 1487-1503, 1993.
doi:10.1137/0914086

19. Tan, K., W. Li, Y. Huang, and J. Yang, "Angular resolution enhancement of real-beam scanning radar base on accelerated iterative shinkage/thresholding algorithm," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 929-932, IEEE, 2016.
doi:10.1109/IGARSS.2016.7729235

20. Zha, Y., Y. Huang, Z. Sun, Y. Wang, and J. Yang, "Bayesian deconvolution for angular superresolution in forward-looking scanning radar," Sensors, Vol. 15, No. 3, 6924-6946, 2015.
doi:10.3390/s150306924