1. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 510-519, 1961.
doi:10.1063/1.1736034
2. De Vos, A. and H. Pauwels, "On the thermodynamic limit of photovoltaic energy conversion," Applied Physics, Vol. 25, No. 2, 119-125, 1981.
doi:10.1007/BF00901283
3. Wiemer, M., V. Sabnis, and H. Yuen, "43.5% efficient lattice matched solar cells," Proc. SPIE, Vol. 8108, No. 810804, 2011.
4. Swanson, R. M., "A proposed thermophotovoltaic solar energy conversion system," Proc. IEEE, Vol. 67, No. 3, 446-447, 1979.
doi:10.1109/PROC.1979.11270
5. Ruppel, W. and P. Wurfel, "Upper limit for the conversion of solar energy," IEEE Trans. Electron. Dev., Vol. 27, No. 4, 877-882, 1980.
doi:10.1109/T-ED.1980.19950
6. Spirkl, W. and H. Ries, "Solar thermophotovoltaics: An assessment," J. Appl. Phys., Vol. 57, No. 9, 4409-4414, 1985.
doi:10.1063/1.334602
7. Landsberg, P. T. and P. Baruch, "The thermodynamics of the conversion of radiation energy for photovoltaics," J. Phys. Math. Gen., Vol. 22, No. 11, 1911-1926, 1989.
doi:10.1088/0305-4470/22/11/028
8. Chaudhuri, T. K., "A solar thermophotovoltaic converter using Pbs photovoltaic cells," Int. J. Energy Res., Vol. 16, No. 6, 481-487, 1992.
doi:10.1002/er.4440160605
9. Stone, K. W., N. S. Fatemi, and L. M. Garverick, "Operation and component testing of a solar thermophotovoltaic power system," Photovoltaic Specialists Conference, 1996, IEEE Conference Record of the Twenty Fifth, 1421-1424, 1996.
doi:10.1109/PVSC.1996.564401
10. Badescu, V., "Thermodynamic theory of thermophotovoltaic solar energy conversion," J. Appl. Phys., Vol. 90, No. 12, 6476-6486, 2001.
doi:10.1063/1.1415756
11. Tobias, I. and A. Luque, "Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux," IEEE Trans. Electron. Dev., Vol. 49, No. 11, 2024-2030, 2002.
doi:10.1109/TED.2002.804731
12. Harder, N. P. and P. Wurfel, "Theoretical limits of thermophotovoltaic solar energy conversion," Semicond. Sci. Technol., Vol. 18, No. 5, S151-S157, 2003.
doi:10.1088/0268-1242/18/5/303
13. Badescu, V., "Upper bounds for solar thermophotovoltaic efficiency," Renew. Energy, Vol. 30, No. 2, 211-225, 2005.
doi:10.1016/j.renene.2004.04.012
14. Andreev, V. M., V. P. Khvostikov, O. A. Khvostikova, A. S. Vlasov, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, "Solar thermophotovoltaic system with high temperature tungsten emitter," Photovoltaic Specialists Conference, 2005, IEEE Conference Record of the Thirty-first,, 671-674, 2005.
doi:10.1109/PVSC.2005.1488220
15. Vlasov, A. S., V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, "TPV systems with solar powered tungsten emitters," AIP Conf. Proc., Vol. 890, 327-334, 2007.
doi:10.1063/1.2711750
16. Rephaeli, E. and S. Fan, "Tungsten black absorber for solar light with wide angular operation range," Applied Physics Letters, Vol. 92, No. 21, 211107, 2008.
doi:10.1063/1.2936997
17. Rinnerbauer, V., Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, "High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals," Optics Express, Vol. 21, No. 9, 11482, 2013.
doi:10.1364/OE.21.011482
18. Celanovic, I., N. Jovanovic, and J. Kassakian, "Two-dimensional tungsten photonic crystals as selective thermal emitters," Applied Physics Letters, Vol. 92, No. 19, 193101, 2008.
doi:10.1063/1.2927484
19. Yeng, Y. X., M. Ghebrebrhan, P. Bermel, and W. R. Chan, "Enabling high-temperature nanophotonics for energy applications," Proceedings of the National Academy of Sciences, Vol. 109, No. 7, 2280-2285, 2012.
doi:10.1073/pnas.1120149109
20. Nam, Y., Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, "Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters," Solar Energy Materials and Solar Cells, Vol. 122, 287-296, 2014.
doi:10.1016/j.solmat.2013.12.012
21. Rephaeli, E. and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Optics Express, Vol. 17, No. 17, 15145-15149, 2009.
doi:10.1364/OE.17.015145
22. Sergeant, N. P., M. Agrawal, and P. Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Optics Express, Vol. 18, No. 6, 5525-5540, 2010.
doi:10.1364/OE.18.005525
23. Lenert, A., D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovi´c, M. Soljacic, and E. N. Wang, "A nanophotonic solar thermophotovoltaic device," Nature Nanotechnology, Vol. 9, No. 2, 126-130, 2014.
doi:10.1038/nnano.2013.286
24. Chou, J. B., Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljacic, E. N. Wang, and S. G. Kim, "Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications," Optics Express, Vol. 22, No. 101, A144-A154, 2014.
doi:10.1364/OE.22.00A144
25. Mo, L., L. Yang, E. H. Lee, and S. He, "High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics," Plasmonics, Vol. 10, No. 3, 529-538, 2015.
doi:10.1007/s11468-014-9837-6
26. Shackelford, J. F., Y. H. Han, S. Kim, and S. H. Kwon, CRC Materials Science and Engineering Handbook, CRC Press, 2015.
27. Touloukian, Y. S. and D. P. DeWitt, Thermophysical Properties of Matter, The TPRC Data Series, 1970.
28. Roberts, S., "Optical properties of nickel and tungsten and their interpretation according to Drude’s formula," Physical Review, Vol. 114, No. 1, 104, 1959.
doi:10.1103/PhysRev.114.104