Vol. 162
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-07-30
A Nanostructure-Based High-Temperature Selective Absorber-Emitter Pair for a Solar Thermophotovoltaic System with Narrowband Thermal Emission
By
Progress In Electromagnetics Research, Vol. 162, 95-108, 2018
Abstract
Using absorber-emitter modules, solar thermophotovoltaic (STPV) systems could potentially break through the Shockley-Queisser limit. Efficient spectral selectivity and high temperature endurance are the keys to this technology. In this paper, a high-efficiency selective absorber-emitter module based on refractory material nanostructures is designed for solar thermophotovoltaic applications. Our numerical simulations show that the proposed absorber-emitter module could provide a specified narrowband emission spectrum above the bandgap with optimal bandwidth, and its performance is robust and independent of incident angle and polarization. According to detailed balance calculations, over a broad range of module temperatures, the solar cell efficiency of our design could suprass the Shockley-Queisser limit by 41%.
Citation
Zhipeng Hu, Yuan Zhang, Liu Liu, Liu Yang, and Sailing He, "A Nanostructure-Based High-Temperature Selective Absorber-Emitter Pair for a Solar Thermophotovoltaic System with Narrowband Thermal Emission," Progress In Electromagnetics Research, Vol. 162, 95-108, 2018.
doi:10.2528/PIER18011002
References

1. Shockley, W. and H. J. Queisser, "Detailed balance limit of efficiency of pn junction solar cells," Journal of Applied Physics, Vol. 32, No. 3, 510-519, 1961.
doi:10.1063/1.1736034

2. De Vos, A. and H. Pauwels, "On the thermodynamic limit of photovoltaic energy conversion," Applied Physics, Vol. 25, No. 2, 119-125, 1981.
doi:10.1007/BF00901283

3. Wiemer, M., V. Sabnis, and H. Yuen, "43.5% efficient lattice matched solar cells," Proc. SPIE, Vol. 8108, No. 810804, 2011.

4. Swanson, R. M., "A proposed thermophotovoltaic solar energy conversion system," Proc. IEEE, Vol. 67, No. 3, 446-447, 1979.
doi:10.1109/PROC.1979.11270

5. Ruppel, W. and P. Wurfel, "Upper limit for the conversion of solar energy," IEEE Trans. Electron. Dev., Vol. 27, No. 4, 877-882, 1980.
doi:10.1109/T-ED.1980.19950

6. Spirkl, W. and H. Ries, "Solar thermophotovoltaics: An assessment," J. Appl. Phys., Vol. 57, No. 9, 4409-4414, 1985.
doi:10.1063/1.334602

7. Landsberg, P. T. and P. Baruch, "The thermodynamics of the conversion of radiation energy for photovoltaics," J. Phys. Math. Gen., Vol. 22, No. 11, 1911-1926, 1989.
doi:10.1088/0305-4470/22/11/028

8. Chaudhuri, T. K., "A solar thermophotovoltaic converter using Pbs photovoltaic cells," Int. J. Energy Res., Vol. 16, No. 6, 481-487, 1992.
doi:10.1002/er.4440160605

9. Stone, K. W., N. S. Fatemi, and L. M. Garverick, "Operation and component testing of a solar thermophotovoltaic power system," Photovoltaic Specialists Conference, 1996, IEEE Conference Record of the Twenty Fifth, 1421-1424, 1996.
doi:10.1109/PVSC.1996.564401

10. Badescu, V., "Thermodynamic theory of thermophotovoltaic solar energy conversion," J. Appl. Phys., Vol. 90, No. 12, 6476-6486, 2001.
doi:10.1063/1.1415756

11. Tobias, I. and A. Luque, "Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux," IEEE Trans. Electron. Dev., Vol. 49, No. 11, 2024-2030, 2002.
doi:10.1109/TED.2002.804731

12. Harder, N. P. and P. Wurfel, "Theoretical limits of thermophotovoltaic solar energy conversion," Semicond. Sci. Technol., Vol. 18, No. 5, S151-S157, 2003.
doi:10.1088/0268-1242/18/5/303

13. Badescu, V., "Upper bounds for solar thermophotovoltaic efficiency," Renew. Energy, Vol. 30, No. 2, 211-225, 2005.
doi:10.1016/j.renene.2004.04.012

14. Andreev, V. M., V. P. Khvostikov, O. A. Khvostikova, A. S. Vlasov, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, "Solar thermophotovoltaic system with high temperature tungsten emitter," Photovoltaic Specialists Conference, 2005, IEEE Conference Record of the Thirty-first,, 671-674, 2005.
doi:10.1109/PVSC.2005.1488220

15. Vlasov, A. S., V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, "TPV systems with solar powered tungsten emitters," AIP Conf. Proc., Vol. 890, 327-334, 2007.
doi:10.1063/1.2711750

16. Rephaeli, E. and S. Fan, "Tungsten black absorber for solar light with wide angular operation range," Applied Physics Letters, Vol. 92, No. 21, 211107, 2008.
doi:10.1063/1.2936997

17. Rinnerbauer, V., Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, "High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals," Optics Express, Vol. 21, No. 9, 11482, 2013.
doi:10.1364/OE.21.011482

18. Celanovic, I., N. Jovanovic, and J. Kassakian, "Two-dimensional tungsten photonic crystals as selective thermal emitters," Applied Physics Letters, Vol. 92, No. 19, 193101, 2008.
doi:10.1063/1.2927484

19. Yeng, Y. X., M. Ghebrebrhan, P. Bermel, and W. R. Chan, "Enabling high-temperature nanophotonics for energy applications," Proceedings of the National Academy of Sciences, Vol. 109, No. 7, 2280-2285, 2012.
doi:10.1073/pnas.1120149109

20. Nam, Y., Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, "Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters," Solar Energy Materials and Solar Cells, Vol. 122, 287-296, 2014.
doi:10.1016/j.solmat.2013.12.012

21. Rephaeli, E. and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Optics Express, Vol. 17, No. 17, 15145-15149, 2009.
doi:10.1364/OE.17.015145

22. Sergeant, N. P., M. Agrawal, and P. Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Optics Express, Vol. 18, No. 6, 5525-5540, 2010.
doi:10.1364/OE.18.005525

23. Lenert, A., D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovi´c, M. Soljacic, and E. N. Wang, "A nanophotonic solar thermophotovoltaic device," Nature Nanotechnology, Vol. 9, No. 2, 126-130, 2014.
doi:10.1038/nnano.2013.286

24. Chou, J. B., Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljacic, E. N. Wang, and S. G. Kim, "Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications," Optics Express, Vol. 22, No. 101, A144-A154, 2014.
doi:10.1364/OE.22.00A144

25. Mo, L., L. Yang, E. H. Lee, and S. He, "High-efficiency plasmonic metamaterial selective emitter based on an optimized spherical core-shell nanostructure for planar solar thermophotovoltaics," Plasmonics, Vol. 10, No. 3, 529-538, 2015.
doi:10.1007/s11468-014-9837-6

26. Shackelford, J. F., Y. H. Han, S. Kim, and S. H. Kwon, CRC Materials Science and Engineering Handbook, CRC Press, 2015.

27. Touloukian, Y. S. and D. P. DeWitt, Thermophysical Properties of Matter, The TPRC Data Series, 1970.

28. Roberts, S., "Optical properties of nickel and tungsten and their interpretation according to Drude’s formula," Physical Review, Vol. 114, No. 1, 104, 1959.
doi:10.1103/PhysRev.114.104